Orbilia jesu-laurae (Ascomycota, Orbiliomycetes), a new species of neotropical nematode-trapping fungus from Puerto Rico, supported by morphology and molecular phylogenetics

Authors: Quijada1, Luis, Baral, Hans-Otto, Beltrán-Tejera, Esperanza, and Pfister, Donald H.

Source: Willdenowia, 50(2) : 241-251

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL: https://doi.org/10.3372/wi.50.50210
Orbilia jesu-laurae (Ascomycota, Orbiliomycetes), a new species of neotropical nematode-trapping fungus from Puerto Rico, supported by morphology and molecular phylogenetics

Abstract: Orbilia jesu-laurae is a new species of nematode-trapping fungus found on decorticated angiosperm wood in a tropical rainforest in Puerto Rico. The single specimen was studied from fresh apothecia and cultures. Morphology was studied and phylogenetic analysis (rDNA: ITS and LSU) was conducted using both sexual and asexual morphs. Nematodes were added to cultures to verify the formation and morphology of the trapping structures. Our results show that the species is in the Arthrobotrys clade, the phylogenetically closest relative being a possibly Mexican genotype with unknown morphology, erroneously referred to as Arthrobotrys musiformis in GenBank. Macro- and micromorphological, ecological and biogeographic data are provided along with a discussion of closely related species.

Key words: adhesive networks, Arthrobotrys, Ascomycota, Caribbean, ITS, LSU, morphology, nematodes, Neotropics, new species, Orbilia, Orbiliomycetes, phylogeny, Puerto Rico

Introduction

Fungi are recognized worldwide as saprobes, parasites and mutualists, but a small percentage (0.5%) of Mucoromycota, Basidiomycota and Ascomycota are carnivorous (Yang & al. 2012; Spatafora & al. 2016). Fungi with this lifestyle often occur in microhabitats with low concentrations of available nitrogen. In such situations they capture and consume small animals and thus can colonize available substrates (Yang & al. 2012). Carnivorous Ascomycota produce complex trapping structures such as constricting rings, sessile adhesive knobs and adhesive networks (Yang & al. 2012). Examples of all these trapping structures are found in association with the asexual states of the genus Orbilia Fr. Based on their conidial and trapping states, all those taxa that produce adhesive networks were previously referred to Arthrobotrys Corda, originally described in 1839, three years after Fries published the genus Orbilia. Baral & al. (2018) treated these fungi as an unpublished series within the genus Orbilia. Because life cycles in some fungi are polymorphic and include both meiosporic and mitosporic structures (teleomorphs and anamorphs), occurring separately in space and time, the same species may have been studied and named independently. In the present case of Arthrobotrys, the first teleomorphic state was elucidated by Pfister (1997). The genus Arthrobotrys, originally characterized by 1-septate conidia produced in single or superposed

1 Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Avenue, Cambridge, MA 02138, U.S.A.; *e-mail: luis_quijada@fas.harvard.edu (author for correspondence).
2 Blaihofstr. 42, 72074 Tübingen, Germany.
3 Department of Botany, Ecology and Plant Physiology, University of La Laguna, 38200 Tenerife, Canary Islands, Spain.
clusters on mononematous conidiophores, is a good example of the problem of dual names. If one is recognizing the genus *Orbilia* in a wide sense, then under the one-fungus-one-name rule the name *Orbilia* takes precedence over *Arthrobotrys*. Members of *Orbilia* with predacious capabilities together with some non-predacious taxa form a monophyletic group, here referred to as the *Arthrobotrys* clade. A majority of species in the *Arthrobotrys* clade capture and consume copepods, mites, collembola, dip- terans, but primarily nematodes (Baral & al. 2018). They have been tested for possible use in biocontrol of pests (Niu & Zhang 2011). The *Arthrobotrys* clade as treated by Baral & al. (2018) includes five unpublished infrageneric taxa, which are basically equivalent to the five previously described genera *Arthrobotrys*, *Dactylella* Grove, *Dactylellina* Morelet, *Drechslerella* Subram. and *Gamsylella* Scholler & al. Of these genera, four are predacious and monophyletic, whereas *Dactylella*, which comprises all non-predacious members of the group, is paraphyletic according to Baral & al. (2018). More than 100 species have been published in the genus *Arthrobotrys*. However, Scholler & al. (1999) recognized only 46 species in the genus when newly circumscribed to include those species with three-dimensional adhesive networks. Teleomorphs of the *Arthrobotrys* clade are mostly characterized by narrow, subulate and curved, falcate ascospores with a small, apical spore body (Baral & al. in press).

Fungal diversity has only rudimentary documentation for the Caribbean Islands, although the region is one of the world’s biodiversity hotspots (Myers & al. 2000). Fungal species richness in Puerto Rico has been better explored in some localities compared to other islands. According to the locality index (http://www.cybertruffle.org.uk/), no orbilicaceous fungi have been reported in a preserved area near San Juan National Park (Julio Enrique Monagas National Park). Little is known about the diversity of *Orbiliomycetes* from Puerto Rico. Cantrell & Lodge (2008) compiled a list of the fungi from Puerto Rico, and only mentioned four species of *Orbilia*: *O. andina* Pat., *O. chrysosoma* (Bull.) Sacc., *O. delicatula* (P. Karst.) P. Karst. (as “O. delica” in error) and *O. cf. gil-lardii* Sacc. Up to now, 14 species of *Orbiliomycetes* have been verified from Puerto Rico by Baral & al. (in press) in their monographic work on the class. The names listed by Cantrell & Lodge (2008) are to be considered as doubtful due to the lack of any morphological or specimen data. Some occurrences were missed in their list, for example *O. pilosa* (Dennis) Baral [Pfister 1997, as “*Orbilia sp./Monacrosporium ? doecydoide*” (Drechsler) R. C. Cooke & C. H. Dickinson]. On the other hand, Pfister collected some other species that he did not publish, such as *Orbilia* sp. (PR-98-20, culture #256; Pfister pers. comm.) and *O. tenuissima* Speg. (PR-11), ascospore isolates from which were produced *Arthrobotrys*-like anamorphs. However, these collections were not studied in detail (except for the teleomorph of PR-11). PR-98-20 was identified as *Arthrobotrys musiformis* Drechsler by Pfister, but cultures are now unavailable. These three species represent the only known Puerto Rican reports of species belonging to the nematode-trapping *Arthrobotrys* clade.

During a field trip of the ascomycete workshop arranged in connection with the 11th International Mycological Congress held in Puerto Rico in 2018, several collections of *Orbiliomycetes* were made in the Julio Enrique Monagas National Park. One of them caught the attention of the first author due to its distinctive morphological features. This species was obviously not reported by Cantrell & Lodge (2008) or Pfister (1997). The morphology of the asci and ascospores clearly indicates a relationship to *Orbilia auricolor* (A. Bloxam) Sacc. and related species of the *Arthrobotrys* clade. The aim of this investigation is to describe this apparently new species and to provide morphological, biogeographical and phylogenetic evidence for its distinction.

Material and methods

The specimen was collected in Bayamón, Puerto Rico, on 15 July 2015 in the Julio Enrique Monagas National Park. The collection was air-dried and subsequently deposited in the Farlow Herbarium, Harvard University (FH). Months later, pieces of wood with the apothecia were placed on a black matboard and rehydrated with a spray bottle for macrophotography. This was done with a Canon EOS 60d digital SLR camera using a Canon EF-S 60 mm macro lens. An Olympus SZX9 stereomicroscope was employed to observe and characterize macromorphology and to perform hand-sectioning. For micromorphological observations a Motic B1 light microscope was used. Digital images were taken with a USB Moticam 2500 camera and biometry was done with the software Motic images Plus 2.0. For each informative morphological feature, 10–30 photographs were taken prior to biometric analysis. The living or dead state of the cells was determined based on the findings of Baral (1992). Mounting media employed were tap water (H₂O) for observing living cells, Congo red (CR) to raise wall contrast, particularly of dead cells, potassium hydroxide 5% (KOH) for killing cells or rehydrating dead specimens, and Melzer’s reagent (MLZ) for exploring amyloid or dextrinoid reactions. The symbols and abbreviations were adopted from Baral (1992): * = living state; † = dead state; *† = living and dead state (no difference noted); SCBs = KOH-soluble cytoplasmic bodies; SBs = spore bodies; VBs = refractive vacuolar bodies; LBs = lipid bodies. Colour coding refers to Anonymous (1976).

Characters of the asexual morphs are presented in this study as well as those of the sexual morph. Difco potato dextrose agar (PDA) and corn meal agar (CMA) were prepared according to manufacturer’s instructions and used to culture the spores from our specimen and obtain the asexual morph. The substratum bearing one apothecium was placed on the inner surface of the lid of a Petri
Fig. 1. Bayesian majority-rule consensus tree of the *Arthrobotrys* clade sensu Baral & al. (in press) based on ITS1-5.8S-ITS2 + LSU. Thickened branches are those with support above 0.95. Each taxon included in the phylogeny contains the following notation: species name + isolate + state + host (Culture number). The hypothetical distribution of taxa morphologically related to *Orbilia jesu-laurae* is shown with a map. The biomes used to color the taxa are as follows: Neotropic, Nearctic, Neotropical, Neartic, Oceanic, Paleartic, and Unclear.

Hypothetical distribution of species morphologically related to *Orbilia jesu-laurae*.

Species colour used in the world map

- **Arthrobotrys musiformis**
- **Arthrobotrys javanicus**
- **Orbilia blumenaviensis**
- **Orbilia musiformis**
- **Arthrobotrys auricolor**
- **Arthrobotrys blumenaviensis**
- **Orbilia jesu-laurae**

Biomes colour used in the phylogeny

- **Afrotropic**
- **Australasia**
- **Indo-Malaya**
- **Nearctic**
- **Neotropic**
- **Oceanic**
- **Paleartic**
- **Unclear**

dish on a small piece of dampened filter paper. The bottom of the Petri dish containing the medium was inverted, so the surface of the PDA or CMA was facing down. The progress of ascospore discharge was checked under the stereomicroscope after several hours. Once spores where deposited on the medium, the lid was replaced with a new
Results

Orbilia jesu-laurae Quijada, Beltrán-Tej., Pfister & Baral, *sp. nov.* - Fig. 2, 3, 4, 5.

MycoBank: MB 833713.

Holotype: Puerto Rico, Julio Enrique Monagas National Park, Bayamón, 18.4093°N, 66.1408°W, 15 m a.s.l., on decorticated branch of unidentified angiosperm on ground, 15 Jul 2018, *L. Quijada LQH-59c* (FH! [sexual morph]). Ex-type cultures were dried down and accessioned as specimens in FH.

GenBank numbers of sequences from sexual morph: ITS = MN816818, LSU = MN816821.

GenBank numbers of sequences from asexual morph: obtained on PDA (*LQH-59a*) ITS = MN816816, LSU = MN816819; obtained on CMA (*LQH-59b*) ITS = MN816817, LSU = MN816820.

Diagnosis — *Orbilia jesu-laurae* differs from *O. blumenaviensis* (Henn.) Baral & E. Weber by mammiform paraphyses apices with abrupt beaks and often several beaks at each tip (terminal and lateral), and in thinner apothecia (0.1–0.2 mm) but of a similar size (1–2 mm). In the asexual morph, *O. jesu-laurae* has shorter and narrower conidiophores and consistently (0 or)1-septate conidia of smaller size (mainly *20–22 × 10–11 μm*) compared to *O. blumenaviensis*.

Description — Sexual morph: apothecia rehydrated 1–1.5(–2) mm diam., 0.1–0.2 mm thick, light brown (57.1.Br) to medium orange-brown (53.m.O), round to somewhat undulating, scattered to subgregarious; disc flat, margin thin to thick, ± smooth, slightly protruding, sessile on a broad base, not erumpent. Asci *(40.5–)45.5–51.5(–64) × 3–4 μm, †(35.5–)38.5–44(–47) × 2.5–3.5 μm, 8-spored, 2–4 lower spores inverted, pars sporifera *(12–21)–25.5(–30) μm; apex †strongly truncate (not indented, not inflated), thin-walled; base with short to medium long stalks, h- or H-shaped. Ascospores *(10–)10.6–11.4(–11.8) × 0.9–1.2 μm, †(8.8–)9.6–10.5(–12) × 0.9–1.1 μm, actual length 10–12.5 μm, narrowly subcylindric to subulate, slightly tapered above, more distinctly so below, with rounded to obtuse poles, medium to strongly curved (less curved in dead state); SBs *1.8–2.3 × 0.4–0.8 μm, rod-shaped, attached to apex by a short filum. Paraphyses apically uninflated or often slightly to moderately thickened, lageniform-mammiform with cylindrical beaks of *2.7–4.5 × (1.5–)1.7–2(–2.5) μm with rounded tips, apically frequently bi- or trifurcate with 1 or 2 shorter lateral beaks, terminal cell *(8.5–)18.5–22.5(–27.5) × (1.5–)2.5–3.5(–4) μm, protruding 3–5 μm beyond living asci, lower cells *(6–)8–9.5(–11.5) × (1.5–)2–2.5 μm, sometimes branched. Medullary excipulum not differentiated from subyemmum, *†8–25 μm* thick, of dense textura intricata, medium to sharply delimited from ectal excipulum. Ectal excipulum composed of vertically oriented *t. globulosa-angularis-prismatica*, at base only of *t. globulosa*, *†67–155 μm* thick, differentiated into layers along flanks and margin. Inner layer of thin-walled *t. globulosa-angularis* extending from lower to upper flanks, *†(9–)15–30(–64) μm* thick, hyaline, cells at lower and upper flank *(7.5–)13.5–17.5(–21.5) × (7–)10–13(–16.5) μm. Cortical layer of thick-walled *(0.5–1.5 μm)* *t. angularis-prismatica* extending from lower flank to margin, *†(8–)12–16(–35) μm* thick, deep yellow (88.d.Y) to light olive brown (94.I.01Br), walls strongly stained red-brown in MLZ, of 2 or 3 rows of...
Fig. 2. Macromorphology and tissues in section of *Orbilia jesu-laurae* – A1–6: rehydrated apothecia on substrate; B1: transverse section of apothecia; B2–4: details of excipulum at margin, upper and lower flank; B5–B6: cells of cortical layer at margin and upper flank; B5: glassy processes stained in Congo red; B6: dextrinoid reaction or cortical cells in MLZ. – Reagents: B1–4 = H₂O; B5 = CR; B6 = MLZ. – Scale bars: A1–6 = 500 µm; B1 = 100 µm; B2–4 = 50 µm; B5, 6 = 10 µm. – State: † = dead.
Fig. 3. Asci, paraphyses and ascospores of *Orbilia jesu-laurae* – C1–4: living and dead asci; D1–3: morphological variation of paraphyses, with one or three cylindric beaks; E1–3: living and dead ascospores. – Reagents: C1, E1 = H₂O; C2, C4, D1, E2 = CR; C3, D2, 3 = MLZ; E3 = KOH. – Scale bars: all = 10 µm. – States: * = living; † = dead.
Fig. 4. Asexual morph of *Orbilia jesu-laurae* in culture – A: macromorphological aspect of colony in PDA; B: general view of vegetative hyphae, conidiophores and conidia; C1–5: conidiophores with attached conidia; D1: vegetative hyphae; D2: chlamydospores; E1–3: conidia. – Reagents: B, C1–5, D1, E1 = H₂O; E2, D2 = CR; E3 = MLZ. – Scale bars: B = 100 µm; C1, D1, 2 = 50 µm; C2–5, E1–3 = 10 µm. – States: * = living; † = dead.
cells from lower to upper flank, cells *(7–8.5–10(–11.5) × (4.5–)7–8.5(–9) µm, at margin with only 1 or 2 rows of cells, *(5–)6.5–8(–9) × (2.5–)3.5–4.5(–5) µm. Outermost cells from lower flank to margin covered by strong yellow (84.s.Y) to deep yellow (85.deepY) refractive glassy exudate, *†1 – 2(–2.5) µm. LBs sparse and small, only observed in lower cells of paraphyses and ectal excipular cells, SCBs or VBs absent.

Asexual morph: Arthro-

Fig. 5. A: asexual morph of Orbilia jesu-laurae in culture formed in contact with cultured nematodes; B1–5: three-dimensional adhesive networks formed after one day in contact with nematodes; C1: living nematodes close to traps; C2, 3. living nematodes trapped; C4: dead nematode with hyphae inside nematode. – Scale bars: B1–5, C1–4 = 50 µm. – State: * = living.
botrys-like. Vegetative hyphae *(1–)3.5–5(–10) μm wide, chlamydospores present, hyaline, smooth, multi-
guttulate, *(8.5–)9.5–11.5(–13) × (7.5–)8–9.5(–10.5) μm. Conidiophores erect, *(90–)200 μm long, 4–6 μm wide at
base, 3–4 μm at apex, branched only at apex, (1–)3 or
4(–6) conidia formed on inconspicuous nodules or dis-
tinct denticles (2.5–5 × 2–3.5 μm) at hardly swollen apex.
Conidia obovoid to obpyriform, *(14–)20–22(–26) ×
(7.5–)10–11(–13) μm, †(16.5–)18–19.5(–22) × (6–)7.5–
8(–9) μm, consistently 1–3-septate (rarely aseptate), often
slightly constricted at septum, upper cell wider and lon-
er than lower cell, containing groups of non-refractive
vacuoles and a few small LBs. Trapping nematodes by
3-dimensional adhesive networks with loops with an in-
er diameter of *(12.5–)23–30(–47.5) μm, loop cells
*(15.5–)20–30(–36) × 6.5–8 μm, formed after adding
nematodes.

Discussion

The *Arthrobotrys* clade was proposed in Baral & al. (2018) for a subgroup of *Orbilia* with predominantly
nematode-trapping capabilities using diverse types of
trapping organs. Species in this clade (Baral & al. 2018)
are characterized by narrowly sickle-shaped (Fig. 3,
E1–3), rod-shaped or ellipsoid ascospores and apothecia
being either tolerant of or sensitive to desiccation (Baral
& al. in press). *Orbilia blumenaviensis* has a pantropi-
cal distribution (Qiao & al. 2012) which includes neo-
tropical (Caribbean belt, subtropical humid eastern
South America), afrotropical (central Africa, Comoros),
Indo-Malayan (subtropical humid SE Asia) and Euro-
pean (thermo-temperate NW Spain) areas (Baral & al.
in press). The isolates of *O. blumenaviensis* included in
our phylogeny (Fig. 1) reflect this distribution. The
three collections clustered unsupported and are distant
with respect to the placement of *O. jesu-laurae*. Mor-
phologically, *O. blumenaviensis* differs in its lanceolate
paraphyses and 1–3-septate conidia (Qiao & al. 2012).
Orbilia terrestris lacks sequence and anamorph data.
It is only known from the type collection in mountain-
ous central Asia. Its ascospores are wider than in *O.
jesu-laurae* (†1.4–1.7 μm vs. †0.9–1.1 μm) and have
a distinct tail-like base (Baral & al. in press; Raitvii
& Faizova 1983). *Arthrobotrys javanicus* and *A. musi-
formis* are the morphologically most similar species to
O. jesu-laurae. *Arthrobotrys javanicus* has an Indo-
Malay distribution (Fig. 1), appearing in tropical or sub-
tropical forests of Java, Yunnan and Taiwan (Baral & al.
in press). *Arthrobotrys musiformis* is widespread with a
Paleartic and Indo-Malayan distribution (Fig. 1); spec-
imens have been reported in temperate (Europe, North
America) and tropical (China) ecosystems (Baral & al.
in press; Drechsler 1937; van Oorschot 1985). The new
species is phylogenetically distant from these two spe-
cies. The clade that includes the two collections from
Mexico and the new species from Puerto Rico have a
neotropical distribution (Fig. 1). In addition, we found
biometric differences among them (measurements for
A. javanicus and *A. musiformis* taken from Baral & al.
in press). First, the ascospore length of *O. jesu-laurae*
(*10–11.8 μm) is larger than in the other two species
(*7–9 μm; *A. javanicus* = *7–9 μm; *A. musiformis* = *7.7–10 μm).
Second, the conidial length of *O. jesu-laurae* is shorter
than in the other two species and the width is in between
(*O. jesu-laurae* = *14–26 × 7.5–13 μm; *A. javanicus* =
*25–42.5 × 9.5–15.5 μm; *A. musiformis* = *18.5–32.5 ×
6–8.5 μm).

Our phylogenetic and morphological analysis showed
that *Orbilia jesu-laurae* is not related to any of the taxa
described so far in the *Arthrobotrys* clade (Baral & al.
2018). The new species has a neotropical distribution,
at least so far as can be said based on a single collec-
tion. The closest phylogenetically related strains are two
Mexican isolates identified in GenBank as *A. musiformis* (EVLL02, EVLL-2), here called “*Arthrobotrys* sp.” because the ex-type culture of *A. musiformis* is in a different clade (Fig. 1). Our work contributes to the knowledge of this group of nematode-trapping fungi in a little-explored geographic area of the world.

Acknowledgements

The first author thanks the support of “Fundación Ramón Areces”, the Department of Organismic and Evolutionary Biology (OEB, Harvard), the Harvard Herbaria and Royal T. Moore awards. We thank to James K. Mitchell for his help with the molecular work included in this paper. We also thank Marc Stadler (Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany) for his help with the molecular work included in this paper. Finally, the first author would like to thank his favourite Puerto Rican, Christian X. Segura Rivera, for his help during the last months.

References

