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Herbarium specimens represent important records of morphological and

genetic diversity of plants that inform questions relevant to global change,

including species distributions, phenology and functional traits. It is increas-

ingly appreciated that plant microbiomes can influence these aspects of plant

biology, but little is known regarding the historic distribution of microbes

associated with plants collected in the pre-molecular age. If microbiomes

can be observed reliably in herbarium specimens, researchers will gain a

new lens with which to examine microbial ecology, evolution, species

interactions. Here, we describe a method for accessing historical plant micro-

biomes from preserved herbarium specimens, providing a proof of concept

using two plant taxa from the imperiled boreal biome (Andromeda polifolia
and Ledum palustre subsp. groenlandicum, Ericaceae). We focus on fungal

endophytes, which occur within symptomless plant tissues such as leaves.

Through a three-part approach (i.e. culturing, cloning and next-generation

amplicon sequencing via the Illumina MiSeq platform, with extensive con-

trols), we examined endophyte communities in dried, pressed leaves that

had been processed as regular herbarium specimens and stored at room

temperature in a herbarium for four years. We retrieved only one endophyte

in culture, but cloning and especially the MiSeq analysis revealed a rich com-

munity of foliar endophytes. The phylogenetic distribution and diversity

of endophyte assemblages, especially among the Ascomycota, resemble

endophyte communities from fresh plants collected in the boreal biome.

We could distinguish communities of endophytes in each plant species

and differentiate likely endophytes from fungi that could be surface con-

taminants. Taxa found by cloning were observed in the larger MiSeq

dataset, but species richness was greater when subsets of the same tissues

were evaluated with the MiSeq approach. Our findings provide a proof of

concept for capturing endophyte DNA from herbarium specimens, support-

ing the importance of herbarium records as roadmaps for understanding the

dynamics of plant-associated microbial biodiversity in the Anthropocene.

This article is part of the theme issue ‘Biological collections for

understanding biodiversity in the Anthropocene’.
1. Introduction
Herbarium specimens represent important records of the morphological, ecologi-

cal and genetic diversity of plants [1–5]. Often these specimens are deposited with

metadata that can inform questions relevant to global change, including historical

records of distributions, phenology and functional traits [6–18]. It is increasingly

appreciated that plant microbiomes can influence these aspects of plant biology,

shaping the functional traits of plants and thus their responses to abiotic and
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biotic stress, their physiology, the timing of their demographic

events and their distributions at diverse scales [19–21].

The rich diversity of microbes in living plants, and infor-

mation about their evolution and biogeography, recently have

become more accessible—particularly through the application

of diverse sequencing technologies and culture-independent

methods [22–24]. Such approaches have highlighted the

phylogenetic and functional diversity of plant microbiomes,

showcasing aspects of their phenology and how they respond

to environmental factors in the context of short-term exper-

iments or environmental shifts ([25–27]; see also [28,29]).

However, little is known regarding the historic distribution of

microbes associated with plants, restricting our understanding

of how such microbial communities may have changed over

time in a given plant species or environment, particularly in

response to changes in climate and other conditions induced

by human activity. We thus lack records relevant to microbial

phenology, function and distributions over time.

One solution is to examine the microbiota of plant tissue

archived as herbarium specimens. Such microbes include

fungal endophytes, a diverse and polyphyletic group of

fungi that occur within healthy plant tissues such as roots

and leaves [30]. Fungal endophytes form important associ-

ations with plants worldwide and have been observed in

living tissue of every plant species examined to date via

culture-based or culture-independent methods [30]. Often

overlooked because they cause no visible symptoms of disease

[31], endophytes are increasingly appreciated for their ben-

eficial impacts on plant physiology and their roles in

mitigating abiotic and biotic stress [30,32–40]. The vertically

transmitted endophytes of cool-season grasses have received

especially extensive attention [41], but the horizontally trans-

mitted endophytes associated with photosynthetic tissues of

all plants are striking in their phylogenetic- and species rich-

ness at scales ranging from individual leaves to landscapes

[42–46]. Overall, foliar fungal endophytes represent a tremen-

dous richness of fungal species, particularly among the largest

fungal phylum (Ascomycota) [47], and thus they contribute

meaningfully to global biodiversity [48]. Their abundance,

diversity and composition can provide insight into the environ-

mental conditions in which plants occur [29,34] and help

connect the dual dynamics of fungal ecology and plant ecology

in a changing world. However, little is known about their his-

torical associations with plants, nor how their distributions and

functional importance may have shifted over time.

Vast collections of plant specimens archived in herbaria

can open a window into the history of endophyte diversity,

and how this diversity has been impacted through the course

of global change [49]. However, it is unclear whether, or to

what extent, the dried material that comprises plant specimens

in most herbaria is amendable to studies of endophyte diver-

sity. Traditionally, fungal endophytes have been isolated on

growth media from surface-sterilized plant material, and emer-

gent colonies have been identified using morphology and/or

analyses of molecular sequence data [43,50–52]. Subsequent

use of culture-independent approaches such as cloning from

fresh plant material revealed a high richness of endophytes

that may not be isolated in culture [53–55]. Such perspectives

have recently been expanded further by next-generation ampli-

con sequencing [45,46,56,57], capturing the rich set of

endophytes that may be recalcitrant to cultivation on standard

media or that might not be detected with the lower-throughput

method of cloning.
Next-generation sequencing approaches have been used

with fresh plant material in diverse settings, but to our knowl-

edge, they have not yet been applied to examine the endophytic

microbiota of herbarium specimens. Previous efforts that have

used herbarium material to assess microbial diversity have

focused on individual microfungi, including pathogens (e.g.

[2,58–63]), and have demonstrated that pathogen DNA can

be captured from preserved tissues if carefully tailored methods

are used. These studies have shown that certain challenges—

such as the issue of DNA degradation in herbarium specimens

[64,65]—can be overcome when herbarium specimens are

examined for fungal associates. For the study of endophytes,

additional challenges include low biomass of individual endo-

phytic fungi in leaves, the potential for multiple endophyte

species to occur in the same parts of leaves (rather than only a

single species), the likelihood of surface contamination by

other fungi, and the use of chemical preservation techniques

that may limit endophyte growth in culture or the capacity to

amplify them via molecular methods [66,67].

We examined the use of culture-based and culture-inde-

pendent methods for capturing endophyte communities from

dried leaf material in a herbarium collection. Specifically, we

use culturing, cloning and next-generation sequencing to

evaluate the diversity of fungal endophytes in preserved speci-

mens of two plant species, Andromeda polifolia and Ledum
palustre subsp. groenlandicum (Ericaceae). Both are distributed

in the northern parts of the Northern Hemisphere across a gra-

dient of climate and human population density [68,69]. As part

of the rich flora of the increasingly imperiled boreal biome,

they provide a basis to unlock the genetic information of

plant-associated microbes stored in herbaria.
2. Material and methods
(a) Sampling
We retrieved 10 mature leaves each of A. polifolia and L. palustre
subsp. groenlandicum (Ericaceae) from herbarium specimens pro-

vided by Jason Karakehian of the Harvard University Herbaria

(HUH). The specimens were collected originally from a bog in

St John, New Brunswick, Canada, in 2013. They were prepared

by pressing and drying, and then were preserved under standard

herbarium conditions in cabinets in Cambridge, MA, USA, for a

period of four years before use in this study. Permission to

sample tissue was obtained before leaves were selected for the

present study. We collected a small piece (approx. 2 cm2) of

material from each leaf specimen under standard sampling pro-

tocol for HUH, which ensured minimal destruction of specimens.

Voucher information, including collection date and collectors are

shown in the electronic supplementary material, table S1.

(b) Workflow and experimental design
The conceptual workflow for our study is outlined in figure 1.

Each leaf sample was cut into 192 segments of 2 mm2 each

(3840 segments in total for the study), surface-sterilized and

then partitioned haphazardly for fungal isolation (culture-

based approach) or DNA extraction (culture-independent

approaches: cloning and next-generation amplicon sequencing).

Surface sterilization followed [70]: sequential immersion and

agitation in 95% ethanol for 30 s, 0.525% NaOCl for 120 s and

70% ethanol for 120 s (hereafter, method A). Because specimens

were brittle and dry, and we were uncertain whether the

standard sterilization method would damage fungal DNA

within tissues, we evaluated two other treatments: (method B)

http://rstb.royalsocietypublishing.org/
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30–60–60 s and (method C) 30–30–30 s, indicating immersion

time (in seconds) in 95% ethanol, 0.525% NaOCl and 70%

ethanol, respectively (figure 1).

Leaf segments were dried briefly under sterile conditions

before initiating the fungal isolation or DNA extraction path-

ways. To limit contamination by exogenous microbes and DNA

[65,70,71], we conducted all work in a dedicated, sterile environ-

ment in which all surfaces and tools were treated with bleach,

DNA Away (Thermo Scientific, USA) and ultraviolet light

(30 min) immediately before use [45,72]. Additional controls

are described below.
(i) Culture-based method
We plated 96 surface-sterilized segments per leaf sample onto the

surface of 2% malt extract agar (MEA; Amresco, USA) under ster-

ile conditions [43–45]. Plates were sealed with Parafilm and

incubated at room temperature (approx. 258C) with approxi-

mately 12 L : 12 D cycles for three months [44]. One endophyte

emerged in culture (see below). It was transferred to axenic cul-

ture and stored in sterile water as a permanent voucher at the

University of Arizona. DNA was extracted from the isolate

using a RedExtract-N-Amp plant PCR kit (Sigma-Aldrich,

St Louis, MO, USA) following the manufacturer’s instructions.

The internal transcribed spacer region (ITSrDNA) and adjacent

D1–D2 region of the nuclear ribosomal large subunit were ampli-

fied by polymerase chain reaction (PCR) as a single fragment

using primers ITS1F and LR3 (see [73,74]). Each 20 ml reaction

mixture included 8 ml of water, 10 ml of RedTaq (Sigma-Aldrich),

0.8 ml of each primer (10 mM concentration), 1.3 ml of bovine

serum albumin (BSA) at a concentration of 15 mg ml21 and 1 ml

of DNA extract. Cycling parameters followed Hoffman et al.
[75]: 948C for 3 min, 36 cycles of 948C for 30 s, 548C for 30 s,

728C for 1 min, and 728C for 10 min. The positive amplicon was

cleaned with ExoSAP-IT (Affymetrix, Santa Clara, CA, USA)

and submitted to the University of Arizona Genetics Core for

bidirectional Sanger sequencing using the Big Dye Terminator

v.3.1 (Applied Biosystems, Foster City, CA, USA). The sequence

was assembled and edited in SEQUENCHER v.4.10.1 (Gene Codes

Corporation, Ann Arbor, MI, USA) prior to analyses.
(ii) Culture-independent pathway
For culture-independent analyses, we extracted total genomic

DNA from leaf tissue and then used fungal-specific primers to

selectively amplify fungal DNA for cloning and Illumina

MiSeq sequencing (figure 1). We used the PowerPlant Pro Kit

(Qiagen, USA) to extract DNA from each of four sets of 24 leaf

segments per specimen, representing the same total leaf area

per leaf as that used for culturing [76]. DNA quality was tested

using a NanoDrop 2000/2000c Spectrophotometer (Thermo

Scientific, USA). The samples were found to have low 260/280

ratios (i.e. the ratio of absorbance at 260 and 280 nm), indicating

potential inhibitors for PCR. Extractions were cleaned using the

DNeasy PowerClean Pro Cleanup Kit (Qiagen, USA) to remove

proteins and phenols prior to PCR.

Cloning pathway. A hemi-nested PCR approach was used to

amplify the fungal ITSrDNA region from the total genomic

DNA obtained from leaves. In the first PCR, the ITSrDNA and

adjacent D1–D2 region of the nuclear ribosomal large subunit

were amplified in a total volume of 20 ml reaction mixture contain-

ing 2.1 ml of water, 10 ml of RedTaq (Sigma-Aldrich), 0.8 ml of each

primer (10 mM concentration of primers ITS1F and LR3), 1.3 ml of

BSA (15 mg ml21 concentration) and 5 ml of DNA extract. Cycling

parameters followed Hoffman et al. [75], as described above. PCR

products were visualized on a 1% agarose gel stained with SYBR

Green. In the second PCR, amplification was repeated as above

with minor alterations: 1 ml of amplicon (PCR products from the

first PCR) was used as template for the second amplification step

using primers ITS1F and ITS4 [73,74] and water was increased to

bring the total reaction volume to 20 ml.

Products from the second PCR were cloned using a Strata-

Clone PCR Cloning Kit (Agilent Technologies, Santa Clara, CA,

USA) and screened using the blue–white screening technique

according to the manufacturer’s protocol. Positive colonies were

transferred to fresh ‘library’ plates and incubated at 378C for 24 h

to increase colony size. Eight positive clones per specimen were

selected and then PCR-amplified with primers M13F and M13R,

as described above. We checked for contamination from reagents

or laboratory handling by running analyses in parallel in which

water, extraction reagents and PCR products from previous

amplifications each were used in place of the DNA template.

http://rstb.royalsocietypublishing.org/
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We observed no contamination in these analyses and thus focus

only on the sequence data obtained from specimens for further

analyses. Sanger sequencing was performed using Big Dye

Terminator v.3.1 (Applied Biosystems, Foster City, CA, USA) at

the University of Arizona Genomics Core. Sequences were

processed as described above.

Illumina MiSeq amplicon sequencing. Amplification was

carried out using a two-step PCR approach [72,77]. The first PCR

(PCR1) was used to amplify fungal ITSrDNA, and a second

PCR was used to add Illumina adapters and unique sample

barcodes. In PCR1, we used phase-shifted primers ITS1F and

ITS4 with universal sequences CS1 and CS2 attached (Integrated

DNA Technologies Inc., USA). Each 20 ml reaction contained

10 ml of Phusion Flash High Fidelity Master Mix (Thermo

Scientific, USA), 0.2 ml of 0.5 mM of each primer, 1 ml of BSA

at a concentration of 20 mg ml21, 5 ml of DNA template and

3.6 ml of molecular biology grade water (Fisher Scientific, USA).

The reaction mixture was amplified by PCR as follows: 988C for

10 s, 28 cycles of 988C for 1 s, 578C for 5 s, 728C for 20 s, and a

1 min extension at 728C [77]. PCR1 was run in triplicate for

each extraction and visualized on a 2% agarose gel stained

with SYBR Green. PCRs from each leaf then were pooled

and diluted with molecular grade water based on band intensity

(1 : 3 or 1 : 10) [72,77].

Pooled and diluted products from PCR1 (including extrac-

tion blanks and negative controls, see below) were used as the

template for PCR2, in which sample-identification barcodes

and Illumina adapters were added (IBEST Genomics Resource

Core, Moscow, ID, USA). Each 20 ml reaction contained 10 ml of

Phusion Flash High Fidelity Master Mix, 0.75 ml of the barcoded

primers at 2 mM concentration, 0.24 ml of BSA at a concentration

of 20 mg ml21, 1 ml of pooled and diluted PCR1 product, and

8.01 ml of molecular biology grade water. The PCR programme

was run for 7 cycles as follows: 988C for 10 s, 28 cycles of 988C
for 1 s, 518C for 5 s, and 728C for 20 s, and a 1 min extension at

728C [72,77]. The product was visualized on a 2% agarose gel.

DNA concentration was quantified using Qubit (Thermo Scienti-

fic, USA) and the Qubit dsDNA HS Assay Kit (Thermo Scientific,

USA). We pooled 20 ng of DNA from each sample into a single

tube, which was shipped on dry ice to the University of Idaho

IBEST Genomics Resources Core for Illumina MiSeq sequencing

[72,77].

To limit contamination [45,72,77], PCR mixes were prepared in

a sterile, dedicated ‘pre-PCR’ hood (i.e. an environment that was

never exposed to amplified DNA). We used a ‘post-PCR’ hood

for library preparation following PCR1 (i.e. PCR1 pooling and

dilutions; addition of diluted PCR1 products to PCR2 master

mix; PCR2 amplicon pooling). We decontaminated all surfaces

and tools in the pre- and post-PCR hoods, including pipettes, as

described above. We used separate reagents, pipettes, aerosol-

resistant pipette tips and consumables for pre- and post-PCR

work. We pooled controls from PCR1 and used them as a template

for PCR2 to ensure that no contamination occurred during pooling

or PCR2 set-up. Although we detected no contamination, we com-

bined 5 ml of each PCR negative control and extraction blank in a

separate pool and subjected them to the same pre-sequencing

treatment as positive amplicon pools. We sequenced these

negative controls in parallel with our samples.

To qualify our inferences from the MiSeq analyses, we simul-

taneously sequenced two mock communities consisting of fungal

DNA (electronic supplementary material, table S2): one with

even concentrations across all species and one with tiered con-

centrations. The mock community consisted of total genomic

DNA extracted directly from 31 phylogenetically diverse fungal

taxa spanning the major fungal phyla (electronic supplementary

material, table S2). Communities were created by pooling 10 ml

of each isolate at the concentrations shown in the electronic sup-

plementary material, table S2. We amplified 2 ml of each mock
community in triplicate for PCR1 via the protocol mentioned

above. Products from PCR1 were pooled and diluted (1 : 10) with

molecular grade water and 1 ml was used as the DNA template

for PCR2 (see above for PCR2 parameters). For sequencing at

IBEST, 20 ng of the even and tiered mock communities was

pooled together with the rest of the samples. Mock community

sequences were assessed for quality (as below) before evaluation

to assess the presence of primer- or sequencing bias.

MiSeq reads were demultiplexed at the IBEST Genomics Core

using standard protocols. Forward reads had overall higher quality

than the reverse reads, so we used only forward reads in our

analyses [78]. Forward reads were assessed for quality via two

methods [72]: (i) FastQC [79] followed by aggregation of reports

using Multi-QC [80] to assess the quality of the MiSeq data; and

(ii) the -fastq_eestats2 command in USEARCH v.10 [81] using

different expected error filters (-ee_cutoffs 0.25,0.5,1.0) and length

thresholds (-length_cut-offs 150,30,10) to assess the number of

reads that would pass these parameters. Based on these assess-

ments, we selected a length and maxEE cut-off that would result

in a high-quality reads per sample while simultaneously maintain-

ing maximum read length. Using the command -fastq_filter in

USEARCH [81], we filtered and trimmed fastq files at a maximum

expected error of 1.0 and length of 200 bp.

After quality assessment, sequences were dereplicated

with the command -fastx_uniques (parameters -sizout). We

used the commands -unoise3 (parameters -zotus -minsize 1)

and -cluster_smallmem (parameters -id ¼ 0.95 -relabel Otu -cen-

troids) in USEARCH v.10, UCHIME, and UNOISE2 [81–83], to check

for chimaeras and cluster sequences into operational taxonomic

units (OTUs; sequences corresponding to taxonomic clades or

monophyletic groups) at 95% sequence similarity, consistent

with previous work on endophytic Ascomycota [44,45,84].

Sample-by-species matrices were created using the USEARCH

command -otutab [81]. Singleton OTUs were removed prior to

data analysis.
(iii) Data analyses
We assembled the full dataset from culturing, cloning and MiSeq

(nonsingletons only) into OTUs at 95% sequence similarity.

Increasing the threshold of sequence similarity of OTUs to greater

stringency at 97% or 99% did not change our primary conclusions

(data not shown). As MiSeq reads are shorter than those produced

from Sanger sequencing, we used ITSx [85] to extract the ITS1

region from sequences obtained from culturing and cloning

prior to clustering into OTUs. Representative sequence data

from each OTU were compared against GenBank via BLAST

(http://ncbi.nih.gov) and evaluated for phylogenetic placement

in T-BAS [86] (electronic supplementary material, table S3). Any

OTU matching a plant rather than a fungus was removed from

the analysis. We removed all OTUs that were represented by

fewer than 10 reads in the MiSeq dataset and did not appear in

the culture-based or cloning datasets. We also removed all OTUs

that were observed in controls at a frequency greater than or

equal to 10% of the number of reads observed from herbarium

samples (electronic supplementary material, table S3). The final

dataset as a whole comprised 114 OTUs, including one sequen-

ced isolate obtained in culture, 64 sequences from cloning, and

198 471 sequences from MiSeq, of which only 63 reads (0.03%)

were from negative controls. We compared endophyte commu-

nities from each host and processing method via analyses of

similarity (ANOSIM) based on the Morisita Index, with visualiza-

tion by non-metric multidimensional scaling and unconstrained

UPGMA clustering in PAST (https://folk.uio.no/ohammer/

past). Sequence data obtained from the three pathways (culturing,

cloning and MiSeq) were deposited in GenBank (Sanger

sequencing: Banklt2155927, MK034363–MK034427, and Illumina

MiSeq: SAMN10218193–SAMN10218202).

https://www.ncbi.nlm.nih.gov/
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3. Results
(a) Culture-based approach
From 1920 leaf segments plated on 2% MEA, we obtained one

isolate in culture (electronic supplementary material, table S3).

It was obtained from a leaf of A. polifolia that was treated

with the least-stringent sterilization method (method C;

immersed and agitated for 30 s in each sterilant). The isolate

is a member of the Pezizomycetes, a common lineage among

endophytes of boreal plants [44]. Its top BLAST match is to an

endolichenic fungus associated with freshly collected lichen in

the boreal zone (electronic supplementary material, table S3).

Although the culture-based method yielded only one

fungal isolate, this approach was insightful in that we observed

no surface-contaminating fungi in culture. This suggests that

even the least-stringent sterilization method (method C) was

effective in removing surface contaminants and that the

pools of samples sterilized by this and method B might be con-

sidered to consist of endophytic fungi. However, even if the

leaf surface did not contain viable fungi after the less-stringent

sterilization treatments, it is possible that remnant DNA could

persist and be amplified via cloning or MiSeq analyses. There-

fore, we considered the sterilization method in subsequent

analyses, with the expectation that those treated with the

most stringent method (method A) are probably endophytic

fungi, and those treated with the intermediate and least-

stringent methods (B and C) probably include endophytic

fungi, in part, validated by the taxonomic distribution of the

fungi obtained in our culture-independent approaches (see

below and the electronic supplementary material, table S3).

(b) Culture-independent approaches
Culture-independent approaches were more successful than

culturing in identifying an endophytic mycota within herbar-

ium samples. We observed 3–5 OTUs (mean ¼ 4.0) among

the 9–12 clones (mean ¼ 10.7) examined in each species/

sterilization treatment combination (electronic supplementary

material, table S3). We observed 25–58 OTUs (mean ¼ 35.5)

among the ca. 17 400–56 900 MiSeq reads examined per

species/sterilization treatment (electronic supplementary
material, table S3). From cloning, we obtained eight OTUs

from A. polifolia, and seven OTUs from L. palustre subsp. groen-
landicum, all of which were observed in the MiSeq dataset

(electronic supplementary material, table S3). In general, the

MiSeq dataset included approximately four times the species

richness as the cloning dataset (electronic supplementary

material, table S3).

The number of reads obtained via MiSeq from the most

stringently sterilized tissues (method A: 48 241 reads from

A. polifolia; 20 377 from L. palustre subsp. groenlandicum) fell

within the range observed from less stringently sterilized

samples of each host species (methods B and C; electronic

supplementary material, table S3). Reads obtained from leaf

tissue treated with method A represented 38.4% of the total

reads from A. polifolia, and 27.7% of those from L. palustre
subsp. groenlandicum. In both species, the OTUs found in tis-

sues treated with method A were similar to those in tissues

treated with less-stringent sterilization methods. Among the

114 OTUs found in the entire analysis, 22 were found only

in tissues treated with method A; 26 were found in tissues

treated with B or A and B; and the remainder were found

in tissues treated with C, C and B, C and A, or A, B and C

(electronic supplementary material, table S3). Together

these results suggest that leaf samples treated with less-

stringent sterilization methods were not covered in dead

cells or DNA from epiphytic fungi or other contaminants.

When the OTU composition of each sample was com-

pared via ANOSIM, communities of fungi were separated

more strikingly by host species (A. polifolia versus L. palustre
subsp. groenlandicum) than by the sterilization method (A, B

or C) or the analysis method (cloning versus MiSeq)

(figure 2). If the contamination of superficial fungi from a

shared herbarium environment, laboratory artefacts or other

aspects of a shared history after collection were an issue,

we would expect the less stringently sterilized samples to

group together regardless of host species, but this was not

observed (figure 2).

The phylogenetic distribution of OTUs is shown in

figure 3, with their taxonomic placement from T-BAS and

top BLAST matches listed in the electronic supplementary

material, table S3. Ascomycota were particularly common,

http://rstb.royalsocietypublishing.org/
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Figure 3. Phylogenetic diversity of Ascomycota observed by culturing, cloning and MiSeq analyses of herbarium specimens of Andromeda polifolia and Ledum
palustre subsp. groenlandicum, as inferred in T-BAS [86]. Branches are coloured by class; classes in which fungi were most frequently observed in the present
study are labelled in colours that match the branches and outermost ring (Pezizomycetes, Leotiomycetes, Sordariomycetes, Lecanoromycetes, Eurotiomycetes, Dothi-
deomycetes). The middle ring indicates the host range observed for each OTU (observed in Andromeda, blue; Ledum, red; both species, purple; electronic
supplementary material, table S3). The inner ring indicates the sterilization method(s) by which each OTU was observed (method A only, green; method B, or
A and B, tan; method C, A and C, B and C, or A, B and C, ochre; electronic supplementary material, table S3). Clades or groups of taxa that were not observed,
or were rarely observed in this study are marked with letters: A, outgroups, Schizosaccharomycetes, Taphrinomycetes, Saccharomycetes and Orbiliomycetes. B, Geo-
glossomycetes. C, Laboulbeniomycetes. D, Lichinomycetes, Coniocybomycetes, Xylonomycetes. E, Arthoniomycetes. T-BAS tentatively placed some strains in the
Arthoniomycetes and Xylonomycetes (electronic supplementary material, table S3), but with low confidence and conflicting placement in the Lecanoromycetes,
such that they are not depicted here.
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accounting for ca. 85 of the 94 OTUs that could be placed to

phylum by the union of T-BAS and BLAST results (electronic

supplementary material, table S3). We also observed sequence

data consistent with Basidiomycota (eight OTUs) and Chytri-

diomycota (one OTU) (figure 3; electronic supplementary

material, table S3). We were successful in recovering sequence

data for all strains used in the mock communities, suggesting

that the suite of methods used in the MiSeq analysis was

appropriate for capturing a phylogenetic breadth of fungi

(electronic supplementary material, table S2).
Within the Ascomycota, the classes Pezizomycetes,

Leotiomycetes, Lecanoromycetes, Eurotiomycetes and Dothi-

deomycetes were particularly common (figure 3; electronic

supplementary material, table S3). One OTU was placed in

the Xylonomycetes (obtained from leaves treated with method

B, but with conflicting matches in T-BAS to representative Leca-

noromycetes) and two were placed in the Arthoniomycetes

(both obtained only from leaves treated with method C, and

placed with low confidence). Overall these results echo previous

studies of endophytes of fresh tissue from the boreal zone and

http://rstb.royalsocietypublishing.org/
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similar ecosystems, which highlight the high phylogenetic rich-

ness of Pezizomycotina in the phyllosphere (see [44]). At least

24 orders and 38 families were predicted by T-BAS to be

present among the Ascomycota observed here, with approxi-

mate genus- and species matches listed in the electronic

supplementary material, table S3.

Each of the commonly represented classes except Pezizomy-

cetes contained fungi observed only in tissues treated with

method A (figure 3; electronic supplementary material, table

S3). Each clade has been reported to contain endophytes pre-

viously (but see section Discussion for an evaluation of the

Lecanoromycetes). The broad distribution of classes observed

here is consistent with previous studies of angiosperms freshly

collected in the boreal biome with respect to the high

phylogenetic diversity of Ascomycota as a whole, and the

especially high frequency of Dothideomycetes, Sordariomycetes,

Leotiomycetes, Eurotiomycetes and Pezizomycetes (figure 3).
374:20170395
4. Discussion
(a) Perspectives on herbarium specimens for studies of

endophytic fungi
Natural history collections are increasingly appreciated for

their rich potential to complement studies centring on systema-

tics and taxonomy. These include studies of climate change

relevant to plant species distributions, phenology and func-

tional traits [10,15–18]. Although herbarium specimens were

not initially collected for these new uses and often present chal-

lenges with respect to sampling biases in geographical,

taxonomic, temporal and phylogenetic dimensions [87,88],

the relevance of herbarium specimens is growing as habitat

alteration, climate shifts and other human impacts change

the natural world. Such relevance also grows concomitantly

with technological advances that allow herbarium specimens

to be used in new ways. For example, large efforts to digitize

and mobilize collections allow researchers to ask novel,

emergent questions at large scales (e.g. with respect to biogeo-

graphy or regional patterns of phenology [89]). In parallel, new

technologies have increased the power of herbarium specimens

with respect to accessing their DNA content, which can be used

to address enquiries in evolutionary biology, genomics, and

increasingly, microbial ecology [89,90].

Here, we report a proof-of-concept approach to explore

the diversity of endophytes from plant specimens preserved

in the manner of a typical herbarium. We show that culturing

was not effective in capturing a diversity of endophytes, but

that cloning and especially next-generation amplicon sequen-

cing can reveal biodiversity of endophytic fungi within

preserved plant tissues. Through the use of careful controls

and comparison with the literature, we anticipate that the

majority of the fungi observed here through their molecular

signatures are endophytic fungi that were preserved in the

form of DNA in the process of archiving plant material in a

herbarium collection. If broadly applicable, such an approach

could shed light on a hidden dimension of biodiversity

currently housed in herbaria, while also setting the stage

for questions regarding the historical biogeography and

evolutionary history of plant-associated microbes.

Overall, the prevalence of fungi from the most stringent sur-

face-sterilization method in clades such as the Leotiomycetes,

Sordariomycetes, Eurotiomycetes and Dothideomycetes is
consistent with that expected for boreal angiosperms [44]. We

anticipate that OTUs which were present in leaves treated

with method A, and also observed in less stringently sterilized

samples, might also include endophytes in these clades and in

the Pezizomycetes [44,45]: these taxa are rare as surface con-

taminants compared to the prolifically conidiating fungi in

other lineages that often occur incidentally in herbaria, labora-

tories and other built environments (electronic supplementary

material, table S3).

We focused on material that was dried and maintained in

a herbarium collection following standard methods. In gen-

eral, next-generation studies of freshly collected material

rely on either processing material immediately upon collec-

tion or preservation via drying in silica gel or archiving in

buffers or ethanol [45]. Our results suggest that the standard

drying protocols used by herbarium-based collectors may be

amenable to downstream microbial ecology studies, albeit

with important caveats pending further work (see Biases

and future directions).

Our study focused on leaves, highlighting a resource

common in herbarium specimens. As herbarium specimens

often lack roots, questions that might be addressed in terms

of rhizosphere ecology may be somewhat limited. However,

the presence of roots in specimens of many grasses, for

example, raises the possibility for such future work with her-

barium specimens. We collected entire leaves from herbarium

specimens for the work described here, but small frag-

ments—such as those that break from dried specimens with

time or handling—could be used instead. Thus, the potential

to perform this work without destructively sampling or

actively damaging specimens is promising.
(b) Biases and future directions
Although we demonstrated a positive proof of concept in

capturing evidence of the endophytic fungi in dried herbar-

ium specimens, biases and uncertainties in our study

should be explored before wide application of this approach.

These concerns fall into three broad categories.

First, to study endophyte biodiversity in the historical fra-

mework of herbarium specimens requires careful attention to

the nature of herbarium specimens. For example, choices

made in the field to select particular material may not be docu-

mented with specimens, yet could impact perspectives on

endophytes at various taxonomic and geographical scales

(e.g. collections along forest edges versus interiors, or forest

canopies versus understories, could correspond to different

endophyte communities; similarly, collection of younger foli-

age could result in leaves with fewer endophytes than more

mature leaves). Preservation methods for individual herbar-

ium specimens also may be important: whether leaves were

dried at high temperatures, quickly or slowly, or immediately

after collection could impact DNA quality or the capacity of

epiphytic fungi to colonize leaf interiors. Such issues could

lead to spurious results regarding endophyte diversity in the

broad sense, compounded by the multidimensional biases

that herbarium collections represent and the fact that the orig-

inal collections were intended for purposes other than those

described here [87,88].

Second, our proof-of-concept work focused on only two

species in one family, only on boreal plants, and only material

that had been archived for four years. Further analyses are

needed to determine whether the methods described here

http://rstb.royalsocietypublishing.org/
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will be successful for studying endophyte communities in

older specimens, or in specimens from other plant lineages

and biomes. We currently are exploring such methods and

anticipate that for the oldest and most recalcitrant cases,

‘ancient DNA’ techniques may be needed to obtain high-

quality data (see [65]). In that case, as in the present study,

we emphasize the need for highly sterile work environments

and careful attention to potential contamination, which could

be especially important in the handling of dried plant material

with only small quantities of fragmented fungal DNA. The

temporal limitation of our study could be assessed by sampling

across a time series of collections, with the first approaches per-

haps benefitting most from focusing on specimens of a given

host taxon from a focal region, collected and preserved with

consistent methods over a long timeframe of collections. We

have initiated such a study with a focus on ericaceous hosts

in the northeastern USA, with results pending. In turn, limit-

ations associated with biotic zones can be alleviated by

comparing multiple specimens of the same species across

broad geographical and environmental gradients. Finally, sur-

veys of diverse taxonomic groups of plants collected

contemporaneously would help inform the limits on studying

endophyte communities given issues such as leaf chemistry,

which impacts the efficacy of DNA extraction and PCR in

many cases.

Third, a challenge with our study is that we do not have a

‘positive control’ in the sense of freshly collected leaf material

with which to compare endophyte diversity. This is a challen-

ging issue to overcome, as typically herbarium specimens

will represent ecological and temporal contexts not exactly

the same for freshly collected material. Similarly, we have

limited inference with regard to the abundance of particular

endophyte taxa, and thus the degree to which our analyses

represent true endophyte diversity and community compo-

sition will require scrutiny. One useful approach would be

to use probability-of-detection analyses on many subsets of

the same accessions, allowing us to address statistically the

probability of detecting a given endophyte if it is there. We

also advocate the use of carefully constructed mock
communities that, with known quantities of DNA for each

endophyte strain, can help determine the validity of read

abundance as a proxy for endophyte abundance (electronic

supplementary material, table S2 for this study, and for an

example of such an approach in a different study system,

see Taylor et al. [91]).
(c) Conclusion
If broadly applicable and if tempered well by controls, the

methods described here have the potential to unlock an excit-

ing historical resource—that is, the holdings of endophytic

fungi in herbaria worldwide. As we continue to test and

improve these methods, we hope to scale up to questions

that focus on those relevant to understanding major shifts

at a global scale due to the human-driven changes that

frame the Anthropocene. What are the historical associations

of endophytes and plants? To what extent can each inform

biogeographical and evolutionary questions of the other?

How have patterns of diversity changed over time? What

are the historic and modern ranges of endophytic fungi,

and what forces—anthropogenic and otherwise—define

their distributions and relationships with plants? By addres-

sing these questions, we can contextualize plant and

microbial ecology in a historic framework, inferring past

shifts as a basis for predicting future changes in these diverse

partners and the important symbioses they comprise.
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MultiQC: summarizing analysis results from multiple
tools and samples in a single report. Bioinformatics
19, 3047 – 3048. (doi:10.1093/bioinformatics/
btw354)

81. Edgar RC. 2010 Search and clustering orders of
magnitude faster than BLAST. Bioinformatics 26,
2460 – 2461. (doi:10.1093/bioinformatics/btq461)

82. Edgar RC. 2016 UCHIME2: improved chimera
detection for amplicon sequences. (doi:10.1101/
074252)

83. Edgar RC. 2016 UNOISE2: improved error-correction
for Illumina 16S and ITS amplicon reads. (doi:10.
1101/081257)

84. U’ren JM, Dalling JW, Gallery RE, Maddison DR, Davis
EC, Gibson CM, Arnold AE. 2009 Diversity and
evolutionary origins of fungi associated with seeds of a
neotropical pioneer tree: a case study for analysing
fungal environmental samples. Mycol. Res. 113,
432 – 449. (doi:10.1016/j.mycres.2008.11.015)

85. Bengtsson-Palme J et al. 2013 ITSx: improved
software detection and extraction of ITS1 and ITS2
from ribosomal ITS sequences of fungi and other
eukaryotes for use in environmental sequencing.
Methods Ecol. Evol. 4, 914 – 919. (doi:10.1111/2041-
210X.12073)

86. Carbone I, White JB, Miadlikowska J, Arnold AE,
Miller MA, Kauff F, U’Ren JM, May G, Lutzoni F.
2017 T-BAS: tree-based alignment selector toolkit
for phylogenetic-based placement, alignment
downloads, and metadata visualization: an example
with the Pezizomycotina tree of life. Bioinformatics
33, 1160 – 1168. (doi:10.1093/bioinformatics/
btw808)

87. Meyer C, Weigelt P, Kreft H. 2016 Multidimensional
biases, gaps and uncertainties in global plant
occurrence information. Ecol. Lett. 19, 992 – 1006.
(doi:10.1111/ele.12624)

88. Daru BH et al. 2018 Widespread sampling biases in
herbaria revealed from large-scale digitization. New
Phytol. 217, 939 – 955. (doi:10.1111/nph.14855)

89. Huang YL, Bowman EA, Massimo NC, Garber NP,
U’Ren JM, Sandberg DC, Arnold AE. 2018 Using
collections data to infer biogeographic,
environmental, and host structure in communities
of endophytic fungi. Mycologia 110, 47 – 62.
(doi:10.1080/00275514.2018.1442078)

90. Bruns TD, Fogel R, Taylor JW. 1990 Amplification
and sequencing of DNA from fungal herbarium
specimens. Mycologia 82, 175 – 184. (doi:10.2307/
3759846)

91. Taylor MJ, Mannan RW, U’Ren JM, Garber NP,
Gallery RE, Arnold AE. In press. Age-related
variation in the oral microbiome of urban Cooper’s
hawks (Accipiter cooperii). BMC Microbiol.

http://dx.doi.org/10.1080/15572536.2007.11832578
http://dx.doi.org/10.1080/15572536.2007.11832578
http://dx.doi.org/10.3852/09-158
http://dx.doi.org/10.3852/09-158
http://dx.doi.org/10.1038/nmeth1156
http://dx.doi.org/10.1073/pnas.1209872109
http://dx.doi.org/10.1073/pnas.1209872109
http://dx.doi.org/10.1007/BF00020088
http://dx.doi.org/10.1094/PHYTO.1998.88.11.1120
http://dx.doi.org/10.1094/PHYTO.1998.88.11.1120
http://dx.doi.org/10.1038/35079606
http://dx.doi.org/10.1073/pnas.0705590104
http://dx.doi.org/10.1073/pnas.0705590104
http://dx.doi.org/10.1371/journal.ppat.1004028
http://dx.doi.org/10.1371/journal.ppat.1004028
http://dx.doi.org/10.2144/000114517
http://dx.doi.org/10.1007/BF02799431
http://dx.doi.org/10.1007/BF02799431
http://dx.doi.org/10.1146/annurev.genet.37.110801.143214
http://dx.doi.org/10.1146/annurev.genet.37.110801.143214
http://dx.doi.org/10.1371/journal.pone.0028448
http://dx.doi.org/10.1371/journal.pone.0153071
http://dx.doi.org/10.1111/gcb.12643
http://dx.doi.org/10.1038/35072071
http://dx.doi.org/10.1046/j.1365-294X.2003.01807.x
http://dx.doi.org/10.1046/j.1365-294X.2003.01807.x
http://dx.doi.org/10.1073/pnas.1706324114
http://dx.doi.org/10.1111/j.1365-294X.1993.tb00005.x
http://dx.doi.org/10.1111/j.1365-294X.1993.tb00005.x
http://dx.doi.org/10.2181/1533-6085(2008)40[91:MARADF]2.0.CO;2
http://dx.doi.org/10.2181/1533-6085(2008)40[91:MARADF]2.0.CO;2
http://www.protocols.io
http://www.protocols.io
http://dx.doi.org/10.17504/protocols.io.fs8bnhw
http://www.protocols.io
http://dx.doi.org/10.17504/protocols.io.fs9bnh6
http://dx.doi.org/10.17504/protocols.io.fs9bnh6
http://dx.doi.org/10.1128/AEM.02576-16
http://dx.doi.org/10.1128/AEM.02576-16
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1093/bioinformatics/btw354
http://dx.doi.org/10.1093/bioinformatics/btw354
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1101/074252
http://dx.doi.org/10.1101/074252
http://dx.doi.org/10.1101/081257
http://dx.doi.org/10.1101/081257
http://dx.doi.org/10.1016/j.mycres.2008.11.015
http://dx.doi.org/10.1111/2041-210X.12073
http://dx.doi.org/10.1111/2041-210X.12073
http://dx.doi.org/10.1093/bioinformatics/btw808
http://dx.doi.org/10.1093/bioinformatics/btw808
http://dx.doi.org/10.1111/ele.12624
http://dx.doi.org/10.1111/nph.14855
http://dx.doi.org/10.1080/00275514.2018.1442078
http://dx.doi.org/10.2307/3759846
http://dx.doi.org/10.2307/3759846
http://rstb.royalsocietypublishing.org/

	A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens
	Introduction
	Material and methods
	Sampling
	Workflow and experimental design
	Culture-based method
	Culture-independent pathway
	Data analyses


	Results
	Culture-based approach
	Culture-independent approaches

	Discussion
	Perspectives on herbarium specimens for studies of endophytic fungi
	Biases and future directions
	Conclusion
	Data accessibility
	Competing interests
	Funding

	Acknowledgements
	References


