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Endophytism and endolichenism
in Pezizomycetes: the exception
or the rule?

Introduction

Fungal endophytes live asymptomatically within plants and are
widespread inhabitants of leaves and other organs (Wilson, 1995).
Likewise, endolichenic fungi live asymptomatically within lichens,
occurring in healthy lichen thalli worldwide (Arnold et al., 2009).
Endophytes and endolichenic fungi are ecologically similar, living
in symbiosis with either a plant or the photobionts of lichens
(Arnold et al., 2009), and both functional groups represent the
samemajor lineages of fungi (U’Ren et al., 2012). As a whole, these
fungi include diverse species whose life cycles often include
pathogenic or saprobic phases (Porras-Alfaro & Bayman, 2011;
Selosse, 2018; Terhonen et al., 2019). Endophytes and
endolichenic fungi occur from polar regions to the tropics (Arnold
et al., 2009), with most species transmitted horizontally (see
Rodriguez et al., 2009). Although most endophyte–host interac-
tions have not been examined, some have positive impacts on the
physiology, growth or stress tolerance of their hosts (e.g. Arnold
et al., 2003; Rodriguez et al., 2009; Porras-Alfaro & Bayman,
2011). Endophytic and endolichenic fungi are especially common
and diverse among the largest nonlichenized lineages of the
subphylum Pezizomycotina (Ascomycota), with variation among
host lineages and biomes in the relative abundance of the five most
common classes in which endophytism is known (Sordari-
omycetes, Dothideomycetes, Leotiomycetes, Eurotiomycetes and
Pezizomycetes; Arnold et al., 2009).

Among these, fungi in the class Pezizomycetes are of special
interest because the biology of many taxa is incompletely known.
This class consists of one order (Pezizales), 23 families and an
estimated 2000 species (Pfister & Healy, 2021). Species of
Pezizomycetes include well-documented plant pathogens (Marek
et al., 2009), ectomycorrhizal (ECM) fungi (Tedersoo et al., 2006)
and saprobes (Hobbie et al., 2001; Hansen & Pfister, 2006). Some
species colonize specific substrates, acting as parasites of bryophytes
(D€obbeler, 1997) or as specialized saprobes of dung (Pfister, 2015;
Richardson, 2019) or postfire materials (Egger, 1986). Over the
past decade, studies have shown that some species of Pezizomycetes
are common as endophytes within bryophytes and occur frequently
in lichen thalli (U’Ren et al., 2010, 2019). The life cycles and
trophic ecology of some Pezizomycete species are unclear or
controversial, and the endophytic habit has not been considered an
important ecological strategy across the class (Pfister, 2015). Yet

evidence suggests amore complex story. For example, stable isotope
analyses indicate that members of the genusMorchella (morels) are
able to access dead organic matter (Hobbie et al., 2001, 2016), but
they also can live endophytically in roots (Baynes et al., 2012) and
in conifer needles (Baroni et al., 2018). Likewise, the esteemed
black trufflesTuber melanosporum andT. aestivum are ECM fungi,
but in an interesting twist to truffle ecology, they have been shown
to live as endophytes in roots of non-ECM plants (Schneider-
Maunoury et al., 2020).

While studying Pezizomycetes from an evolutionary and
functional perspective, we noted that rDNA sequences frommany
Pezizomycete endophytes were available inGenBank, but that their
phylogenetic affinities were not defined. Many sequences were
generated from living cultures isolated from diverse plants and
lichens sampled across the globe by Arnold and collaborators at the
University of Arizona (UA) and maintained there as part of the
Robert L. Gilbertson Mycological Herbarium (Myco-ARIZ; e.g.
Hoffman & Arnold, 2010; U’Ren et al., 2010, 2012, 2014, 2019;
Lau et al., 2013; Sandberg et al., 2014; Massimo et al., 2015;
Huang et al., 2016, 2018a; U’Ren & Arnold, 2016; Bowman &
Arnold, 2018; Oita et al., 2021a,b).

ThemanyDNAbarcodematches amongendophytes inGenBank
and our unpublished sequences from fruit bodies suggested that
endophytism and endolichenism might be more common, phylo-
genetically dispersed and ecologically important among Pezi-
zomycetes than documented previously. Therefore, we assembled
the available ecological and phylogenetic data on endophytic and
endolichenic Pezizomycete species to ask: (1) Of the estimated 2000
Pezizomycete species known to date, howmany occur as endophytes
or endolichenic fungi?; (2) In which lineages does endophytism or
endolichenismoccur across thePezizomycetes?; and (3)What are the
main nutritionalmodes of endophytic or endolichenic Pezizomycete
species when they are outside their hosts?

We generated comprehensive phylogenies of Pezizomycetes
based on 3315 sequences from the internal transcribed spacer
region of nuclear ribosomal DNA (ITS1-5.8s-ITS2 nrDNA;
hereafter ITS) and 1102 sequences of the large subunit nrDNA
(28S) from fruit bodies, endophytes, and environmental sequences.
We used maximum-likelihood (ML) phylogenetic analysis to
determine operational taxonomic units (OTUs) (Table 1), but also
compared our phylogeny-basedOTUswith those recovered from a
clustering approach based on 97% sequence similarity (Supporting
Information Table S1). We included representatives of 3784 ITS
sequences from the UA endophyte collection as well as new and
reference sequences from Pezizomycete fruit bodies (Tables 1, S2).
We preferentially incorporated available sequences from type
specimens and used representative sequences in combination with
BLAST to obtain additional sequences of endophytic and
endolichenic species (see flow chart in Fig. S1 for graphic of
methods).
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In order to examine placement of endophytes in Pezizomycetes,
we first assembled a single 28S rDNA alignment with represen-
tatives of Pezizomycete lineages and ecological modes, including
266 endophytic and endolichenic sequences, and performed ML
analyses via RAXML with 1000 bootstraps. The 50%majority rule
tree (Figs 1, S2) was used in conjunction with Hansen & Pfister
(2006) and Pfister (2015) as a guide for placement of endophytic
and endolichenic taxa (Table 1). The ITS locus often is useful for
species-level identification (Schoch et al., 2012; K~oljalg et al.,
2013) and many endophyte studies generate only ITS sequences.
Accordingly, we compiled 35 separate ITS alignments for individ-
ual families or lineages within families of Pezizomycetes, including
1046 endophytic or endolichenic sequences (Figs S3–S37). Details
of methods, sequence alignments and accession numbers are
provided in Notes S1; Fig. S1; Tables S1, S2.

We detected endophytic and endolichenic species in 50
Pezizomycete genera and in 14 lineages that could not be assigned
confidently to a genus. Together these represented ≥ 160 OTUs
distributed across ≥ 16 families (Table 1; Figs 1, S2–S37). Some
families had endophytism or endolichenism represented in only
one or two genera (e.g. Desmazierella in Chorioactidaceae,
Pseudombrophila in Pseudombrophilaceae), whereas others had
species with these lifestyles in many genera, including Pezizaceae
(27 OTUs in nine genera) and Pyronemataceae (45 OTUs in 17
genera; see also Tedersoo et al., 2013). Our conservative OTU
delimitations based on ITSphylogenies yielded 160OTUswhereas
a clustering-based approach yielded 216 OTUs. However, the two
methods yielded similar inferences regarding the ecology and
phylogenetic distribution of Pezizomycete endophytes and
endolichenic fungi (Table S1). The results presented here are
based on the phylogenetic approach.

Notably, we detected endophytism or endolichenism in two
lineages for which this mode was previously undocumented: the
ECM genus Otidea (Otideaceae) (Fig. S10) and dung saprobe
genusCoprotus (Coprotaceae) (Fig. S6). In both genera we detected
endophytic and endolichenic isolates from multiple hosts, sug-
gesting that endophytism is a regular feature of their biology.
Although a few Pezizomycete lineages with endophytic or
endolichenic members were detected in only a limited range of
hosts (e.g. Ascodesmidaceae was only isolated from vascular
plants), most Pezizomycetes have a broad endophytic host range (as
reported in detail by U’Ren et al., 2019). Endophytic and
endolichenic Pezizomycetes are from lineages with a variety of
trophic strategies, including saprobes, plant pathogens and myc-
orrhizal fungi (Tables S2, S4), but also include taxa for which the
trophic strategies remain unresolved or unknown (Table S5).

One particularly striking finding was an OTU that could not be
assigned to a known family. ThisOTU is represented by five isolates
from angiosperm leaves and lichens in an Alaskan boreal forest
(USA) (U’Ren et al., 2019). It represents a unique lineage nested
between Tuberaceae and Geomoriaceae, both of which consist
exclusively of ECM species (Fig. 2; Notes S1; Tables S1–S3).

The vast majority of Pezizomycete isolates in the culture-based
UAdataset came from lichens (78%).Only one family (Ascodesmi-
daceae) was never detected in lichens, suggesting that lichens are
important hosts for Pezizomycete species (Table S4). However,T
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despite the importance of lichens as hosts, no Pezizomycete families
were restricted to lichens alone andOTUs frommost Pezizomycete
families were detected in many photosynthetic hosts. For example,
the most frequently isolated species were from Sarcosomataceae
(Table S4), a family of largely saprobic taxa. At the genus level
Pseudoplectania (Sarcoscomataceae) was especially well repre-
sented, comprising nearly 40% of Pezizomycete isolates in the
UA dataset (Table S5).

More generally, one conspicuous and recurrent phylogenetic
pattern is that both endophytes and endolichenic fungi are
common in clades containing well-characterized saprobes from
wood, dung or postfire substrates, but infrequent in closely related
ECM or plant pathogenic clades, as noted for Pyronemataceae
by Tedersoo et al. (2013). For example, endophytism and
endolichenism were commonly detected for Geopyxis, a genus of
Tarzettaceae with putatively biotrophic, weakly parasitic and/or
pyrophilous species (Egger, 1986; Vr�alstad et al., 1998), but not
detected for the ECM sister genus Tarzetta (Fig. S35). Likewise,
endophytism and endolichenism was commonly detected for
species of saprobic Pezizaceae (e.g. Peziza s.s., Plicaria and
Geoscypha) (Figs S13, S17, S18) but rarely or never detected for
ECM species such as those in Legaliana or Ruhlandiella (Fig. S11).
In the Discinaceae, endophytism and endolichenism was common
for species ofGyromitra, a genus of putative saprobes, but absent in
species of the ECM sister genus Hydnotrya (Hobbie et al., 2001)
(Fig. S7).

Although endophytes were documented only rarely among
ECM and pathogenic clades of Pezizomycetes, we detected
endophytism and endolichenism in four lineages known previously
only for ECM lifestyles (Otidea and several ECM Pezizaceae), and
endophytism also was reported in species of the ECM genera
Sphaerosporella (Hughes et al., 2020) and Tuber (Schneider-

Maunoury et al., 2018). Although many ECM fungi are difficult
or impossible to culture (Tedersoo et al., 2010), these endophytic
or endolichenic isolates grow well in pure culture and thus enable
future research in genomics, experimental manipulation and
secondary metabolites. There is evidence from Sphaerosporella that
endophytes of needles and colonization of ECM roots may rarely
occur in the same individual host, but that themode of infection for
these two organs is different (Hughes et al., 2020). Additional
studies are needed, perhaps employing culturing, resynthesis,
inoculation and isotopic methods, to substantiate whether Pezi-
zomycete endophytes with identical ITS sequences to those on their
ECM host roots are actually the same genotype and are playing
similar ecological roles. New approaches that allow visualization of
the extent and morphology of fungal colonization, such as
fluorescence in situ hybridization (Schneider-Maunoury et al.,
2020), will be especially helpful in future work.

By contrast, other ECMPezizomycetes (e.g.Otidea, some ECM
Pezizaceae)were not detected as endophytes in their ECMhosts but
were instead found in bryophytes and lichens, suggesting possible
compartmentalization of different trophic modes on different
hosts. A similar pattern also was found among the two lineages of
plant pathogens where endophytism was detected. The endophytic
state of Pithya cupressina is putatively a dormant pathogen because
this fungus is considered the cause of twig die-back on Juniperus,
but it also was found as an endophyte in healthy tissue of the same
Juniperus species. By contrast Rhizina undulata, a root pathogen of
Pinaceae, was endophytic only in lycopods and ferns. Interestingly,
no bryophyte parasites (such as Octospora or Lamprospora) were
detected as endophytic or endolichenic in any sampled host,
including mosses. These patterns suggest that host preferences,
compartmentalization and the ability to colonize different hosts or
host organs may be species- or lineage-specific.

Fig. 1 Maximum likelihood phylogeny based
on 28S sequences of Pezizomycetes
highlighting the placement of endophytic and
endolichenic fungi. Text for taxa detected as
endophytic or endolichenic are green, and
taxa not known as endophytic or endolichenic
are black. All nodes with ≥ 70% bootstrap
support are shown with a purple circle. The
phylogram is a 50%majority rule tree with
support based on 1000 bootstrap replicates
and taxa in the Orbiliomycetes used as the
outgroup. Families within Pezizomycetes are
demarcated by gray shaded regions in the
outer circle. The exception is an undetermined
lineage related to Tuberaceae and
Geomoriaceae (designated by a question
mark; see Fig. 2).
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Fig. 2 Multigene phylogeny based on maximum likelihood and Bayesian analyses of 28S rDNA, rpb2, and tef1 of Discinaceae, Geomoriaceae, Helvellaceae,
Morchellaceae, Tuberaceae, and the undetermined lineage comprised of endophyte and endolichenic isolates. The phylogram is a 50%majority rule treewith
support based on 1000 bootstrap replicates. Posterior probabilities from Bayesian analysis was based on 20 million generations with sampling every 1000
generations, and the first 25% discarded as burn-in. Taxa in the Morchellaceae and Discinaceae were used as the outgroup. Values displayed on branches
represent bootstrap support ≥ 70% (above) and posterior probabilities ≥ 0.95 (below). Northern Hemisphere taxa are highlighted in yellow, Southern
Hemisphere taxaarehighlighted inblue, and lineages found inbothhemispheres arehighlighted ingreen.Fruit bodyphotographsof taxa representativeof each
major clade include Choiromyces alveolatus (Tuberaceae), Geomorium fuegiana (Geomoriaceae), Gyromytra antarctica (Discinaceae), Helvella sp.
(Hevellaceae),Morchella sp. (Morchellaceae), Nothojafnea thaxteri, and Tuber canaliculatum (Tuberaceae).
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Notably, endophytic and endolichenic species were particularly
common among clades of fire-adapted and pyrophilous Pezi-
zomycetes, including 24 OTUs from 19 genera (Table S6).
Raudabaugh et al. (2020) found that pyrophilous taxa such
as Anthracobia melaloma, Ascorhizoctonia praecox, Pyronema
omphalodes and R. undulata are common as endophytes but appear
to be rare to absent in soil. After wildfires, however, these fungi fruit
prolifically on soil and burnt plant debris (e.g. Petersen, 1970;
Reazin et al., 2016; Bruns et al., 2020). Likewise, in a study of
endophytes of Bromus tectorum (cheatgrass), Baynes et al. (2012)
identified several pyrophilous Pezizomycetes (e.g. Peziza ostraco-
derma, Pyronema domesticum, Morchella eximia and M. snyderi).
Subsequent experiments showed that endophyticMorchella species
increased B. tectorum growth and enhanced seed survival following
fire, highlighting a previously unstudied benefit of this symbiosis.
U’Ren et al. (2012) and Huang et al. (2016) reported the
dominance of Pezizomycete endophytic and endolichenic species
in Arizona forests where fire is common, indicating that thismay be
a widespread phenomenon. Our analysis revealed additional
pyrophilous fungi that can be endophytic or endolichenic,
including Geoscypha tenacella and Pyropyxis rubra. Available
evidence suggests hidden roles of some pyrophilous Pezizomycetes
as plant symbionts, setting the stage for studies of ecological effects
of endophytism on host plants and endolichenism on host lichens.

These and other hypotheses will be testable in the future due to
living fungal libraries such as the UA culture collection. Metage-
nomics and other culture-free tools have been and will continue to
be critical for elucidating plant–fungi interactions, especially
because these methods typically detect a far greater diversity of
fungi than culture-based methods alone (U’Ren et al., 2019).
However, studies such as ours highlight the importance of
maintaining living endophytic and endolichenic fungus cultures
and generating ITS and 28S DNA to identify them (see U’Ren
et al., 2019 for benefits and drawbacks of molecular vs culture-
based detection). Fungal cultures can be used for diverse purposes:
to test nutritional requirements, characterize novel metabolites,
sequence genomes and transcriptomes, and inoculate plants to
study the effects on plant and fungal fitness (e.g. Wijeratne et al.,
2012; Sarmiento et al., 2017; Torres-Cruz et al., 2017; Huang
et al., 2018b; Harrington et al., 2019).

In this study, we identified endophytic and endolichenic species
from an impressive 16 of 23 recognized Pezizomycete families, as
well as a lineage that likely represents a new family (undetermined
lineage in Fig. 2). Our results suggest that endophytism and
endolichenism may indeed be the rule rather than the exception
across families of Pezizomycetes. Our conservative phylogenetic
approach toOTU delimitation detected aminimum of 160OTUs
of endophytic and endolichenic Pezizomycetes. This is equivalent
to c. 8% of the estimated 2000 species in this class, but these are
spread across c. 70%of the families. Given that only a small fraction
of potential hosts and geographical areas have been sampled for
endophytes or endolichenic fungi, the number of OTUs is
probably a marked underestimate. Notably, relatively few studies
have broadly sampled lichens wherein Pezizomycete species are
dominant (but seeU’Ren et al., 2012, 2019). It seems probable that
more sampling will detect additional Pezizomycete species as

cryptic residents in plants and lichens from biomes ranging from
tropical forests to polar deserts, as illustrated by culture-based and
culture-free studies (e.g. Higgins et al., 2007; U’Ren et al., 2019;
Oita et al., 2021a).

The ecologies of many rare or understudied species of
Pezizomycetes in genera such as Carbomyces, Eremiomyces,
Glaziella, Hydnocystis, Kalaharituber, Pseudotricharina and Sower-
byella remainmysterious and currently unclear (Læssøe&Hansen,
2007; Tedersoo et al., 2010; Tedersoo & Smith, 2013). Although
the trophic nature formost endophytic Pezizomycetes outside their
hosts is putatively saprobic, endophytism and endolichenism also
appear to be a normal part of the life history in many ECM and
pathogenic species. Functional roles during their endophytic or
endolichenic phase are unknown for any of these trophic groups
and require further investigation. Our results suggest that future
studies to elucidate the lifestyles of these poorly known Pezi-
zomycetes should look first to the nearest plants and lichens to see
what fungi might be living inside.
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Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Flow chart outlining the basic steps for assembling data on
Pezizomycetes endophytes and endolichenics.

Fig. S2 Phylogeny of endophytic fungi in Pezizomycetes based on
28S sequences analyzed withML. This figure is an expanded, linear
version of Fig. 1 that includes more detailed annotation.

Fig. S3 Phylogeny based on ITS sequences of Ascobolaceae and
related endophytic or endolichenic fungi analyzed with ML.

Fig. S4Phylogeny based on ITS sequences ofAscodesmidaceae and
related endophytic or endolichenic fungi analyzed with ML.

Fig. S5 Phylogeny for Coprotaceae and related endophytic or
endolichenic fungi analyzed with ML.

Fig. S6 Phylogeny based on ITS sequences of Chorioactidaceae
and related endophytic or endolichenic fungi analyzed with ML.

Fig. S7 Phylogeny based on ITS sequences of Discinaceae
endophytic or endolichenic fungi analyzed with ML.

Figs S8 and S9 Phylogeny based on ITS sequences of Morchel-
laceae endophytic or endolichenic fungi analyzed with MLood.

Fig. S10 Phylogeny based on ITS sequences of Otideaceae and
related endophytic or endolichenic fungi analyzed with ML.

Fig. S11 Phylogeny based on ITS sequences of Pezizaceae (pro
parte) for placement of endophytes and endolichenic fungi
analyzed with ML.

Fig. S12 Phylogeny based on ITS sequences of Pezizaceae (Dale-
omyces, Malvipezia) and related endophytic or endolichenic fungi
analyzed with ML.

Fig. S13 Phylogeny based on ITS sequences of Pezizaceae
(Geoscypha) and related endophytic or endolichenic fungi analyzed
with ML.

Fig. S14 Phylogeny based on ITS sequences of Pezizaceae (Iodo-
phanus) and related endophytic or endolichenic fungi analyzed
with ML.

Fig. S15 Phylogeny based on ITS sequences of Pezizaceae (Lepi-
dotia) and related endophyte analyzed with ML.

Fig. S16 Phylogeny based on ITS sequences of Pezizaceae (Mat-
tirolomyes, Elderia) and related endophytes analyzed with ML.

Fig. S17 Phylogeny based on ITS sequences of Pezizaceae (Peziza
sensu stricto) and related endophytic and endolichenic fungi
analyzed with ML.

Fig. S18Phylogeny based on ITS sequences of Pezizaceae (Plicaria)
and related endophytic and endolichenic fungi analyzed with ML.

Fig. S19Phylogenybasedon ITS sequences of Pseudombrophilaceae
and related endophytic and endolichenic fungi analyzed with ML.

Fig. S20 Phylogeny based on ITS sequences of Pulvinulaceae and
related endophytic and endolichenic fungi analyzed with ML.

Fig. S21 Phylogeny based on ITS of Pyronemataceae (pro parte) for
placement of endophytes and endolichenic fungi analyzed withML.

Fig. S22 Phylogeny based on ITS of Pyronemataceae (pro parte)
for placement of endophytes and endolichenic fungi analyzed with
ML.

Fig. S23 Phylogeny based on ITS of Pyronemataceae (pro parte)
for placement of endophytes and endolichenic fungi analyzed with
ML.

Fig. S24 Phylogeny based on ITS of Pyronemataceae (Lasiobolid-
ium) for placement of endophytes and endolichenic fungi analyzed
with ML.

Fig. S25 Phylogeny based on ITS of Pyronemataceae (Perilachnea)
for placement of endophytes and endolichenic fungi analyzed with
ML.

Fig. S26 Phylogeny based on ITS of Pyronemataceae (Jafnea,
Pyropyxis, Smardaea) for placement of endophytes and
endolichenic fungi analyzed with ML.

Fig. S27Phylogeny based on ITS of Pyronemataceae (pro parte) for
placement of endophytes and endolichenic fungi analyzed with
ML.

Fig. S28Maximum likelihood analysis of ITS of Pyronemataceae
(Trichophaea, Wilcoxina) for placement of endophytes and
endolichenic fungi analyzed with ML.

Fig. S29 Phylogeny based on ITS sequences of Rhizinaceae and
related endophytic and endolichenic fungi analyzed with ML.

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

New Phytologist (2021)
www.newphytologist.com

New
Phytologist Letter Forum 9



Fig. S30 Phylogeny based on ITS sequences of Sarcoscyphaceae
and related endophytic and endolichenic fungi analyzed with ML.

Fig. S31 Phylogeny based on ITS sequences of Sarcosomataceae
(Donadinia) and related endophytic and endolichenic fungi
analyzed with ML.

Fig. S32 Phylogeny based on ITS sequences of Sarcosomataceae
(Galiella,Plectania) and related endophytic and endolichenic fungi
analyzed with ML.

Fig. S33 Phylogeny based on ITS sequences of Sarcosomataceae
(Pseudoplectania, Sarcosoma) and related endophytic and
endolichenic fungi analyzed with ML.

Fig. S34 Phylogeny based on ITS sequences of Sarcosomataceae
(Urnula) and related endophytic and endolichenic fungi analyzed
with ML.

Fig. S35 Phylogeny based on ITS sequences of Tarzettaceae and
related endophytic and endolichenic fungi analyzed with ML.

Fig. S36 Phylogeny based on ITS sequences of Tuberaceae
analyzed with ML.

Fig. S37 Phylogeny based on ITS sequences of Geomoriaceae and
an undetermined lineage of related endophytic and endolichenic
fungi analyzed with ML.

Notes S1 Additional method details for culture work, molecular
work, and phylogenetic analyses.

Table S1 Number of sequences, characters and endophyte OTUs
included in the rDNA and multilocus analyses.

Table S2 GenBank numbers for newly accessioned sequences and
their sequence sources, herbaria of deposit, and geographical
localities.

Table S3 GenBank numbers for newly accessioned sequences and
their sequence sources, herbaria of deposit, and geographical
localities.

Table S4 Synopsis of the 3784 records of endophytic and
endolichenic Pezizomycete isolates in the UA database showing
both the phylogenetic placement to the family level and the
recorded host associations.

Table S5 Synopsis of the most frequently isolated endophytic or
endolichenic Pezizomycetes in the UA database, enumerated by
genus in a particular type of host.

Table S6Endophytic or endolichenic species of Pezizomycetes that
are obligately pyrophilous or commonly fruit after burns or
volcanic eruptions.
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