Bradshaw, M., et al., 2022.
Secondary DNA Barcodes (CAM, GAPDH, GS, and RpB2) to Characterize Species Complexes and Strengthen the Powdery Mildew Phylogeny.
Frontiers in Ecology and Evolution.
Publisher's VersionAbstractPowdery mildews are a group of economically and ecologically important plant pathogens. In the past 25 years the use of ribosomal DNA (rDNA) in the powdery mildews has led to major taxonomic revisions. However, the broad scale use of rDNA has also revealed multiple species complexes that cannot be differentiated based on ITS + LSU data alone. Currently, there are only two powdery mildew taxonomic studies that took a multi-locus approach to resolve a species complex. In the present study, we introduce primers to sequence four additional regions (CAM, GAPDH, GS, and RPB2) that have the potential to improve support values in both broad and fine scale phylogenetic analyses. The primers were applied to a broad set of powdery mildew genera in China and the United States, and phylogenetic analyses included some of the common complexes. In taxa with nearly identical ITS sequences the analyses revealed a great amount of diversity. In total 154 non-rDNA sequences from 11 different powdery mildew genera were deposited in NCBI’s GenBank, laying the foundation for secondary barcode databases for powdery mildews. The combined and single loci phylogenetic trees constructed generally followed the previously defined species/genus concepts for the powdery mildews. Future research can use these primers to conduct in depth phylogenetic, and taxonomic studies to elucidate the evolutionary relationships of species and genera within the powdery mildews.
Mitchell, J.K., et al., 2022.
Species of the common discomycete genus Bisporella reassigned to at least four genera.
Mycologia.
Publisher's VersionAbstractBisporella as typically conceived is a genus of noticeable, bright yellow inoperculate discomycetes. This interpretation of the genus, however, is at odds with Bisporella pallescens, the current name of the type species of the genus; furthermore, the genus has been interpreted as including the unusual species Bisporella resinicola. By comparing morphological and molecular traits of species traditionally included in Bisporella, we show that the genus is polyphyletic, with many “typical” members of the genus belonging instead in Calycina in Pezizellaceae. Bisporella pallescens is conclusively linked with its asexual morph, Bispora antennata, and the genus Bisporella is abandoned as a later synonym of the monotypic genus Bispora (previously applied only to asexual fungi) and placed as sister to Hymenoscyphus in Helotiaceae. Bisporella resinicola is shown to represent an independent monotypic genus, Eustilbum, which so far is placed incertae sedis in Helotiales. Finally, “Bisporella” subpallida, like Bispora, belongs to Helotiaceae but is instead related to “Phaeohelotium” epiphyllum.
Pfister, D.H., et al., 2022.
A reexamination and realignment of Peziza sensu lato (Pezizomycetes) species in southern South America/Un reexamen y revisión de las especies de Peziza sensu lato (Pezizomycetes) en el cono sur de Sudamérica.
Darwiniana , 10 (1) , pp. 148-177.
Publisher's VersionAbstract
In this study we review recent collections and historical records of epigeous members of the Pezizales formerly placed in the large, heterogenous genus Peziza from temperate southern South America. Recent analyses using molecular phylogenetic methods allow placement of these species in several previously described genera in recognition of the heterogeneity of Peziza. We include species in nine genera, describe one new species (Peziza gamundiae sp. nov.), and propose one new combination (Phylloscypha nothofageti comb. nov.). We also demonstrate that Pustularia microspora is a synonym of the previously described taxon Peziza pseudosylvestris. Our purpose is to draw attention to these taxa in order to promote their collection and study in a modern framework.
En este trabajo hemos revisado material fresco y colecciones históricas de Pezizales epigeos formalmente incluidos en el amplio y heterogéneo género Peziza provenientes de las zonas templadas del sur de Sudamérica. Estudios recientes basados en filogenias moleculares han permitido posicionar estas especies en varios géneros previamente descritos demostrando su heterogeneidad. Incluimos aquí especies de nueve géneros, una especie nueva para la ciencia (Peziza gamundiae sp. nov.) y proponemos una nueva combinación (Phylloscypha nothofageti comb. nov.). También demostramos que Pustularia microspora es sinónimo de un taxón previamente descrito como Peziza pseudosylvestris. Nuestro objetivo es llamar la atención sobre la presencia de estos taxa para promover su recolección y estudio en trabajos científicos modernos.
Nokes, L.F., Haelewaters, D. & ., P.D.H., 2022.
Exploration of Marine Lichenized Fungi as Bioindicators of Coastal Ocean Pollution in the Boston Harbor Islands National Recreation Area.
Rhodora , 122 (992) , pp. 251–273.
Publisher's VersionAbstractThis preliminary exploration of marine lichenized fungi (lichens) as bioindicators of water pollution examined the distribution of intertidal lichen communities in the Boston Harbor Islands National Recreation Area with respect to recorded pollution throughout the harbor. We found significant negative associations between pollution measurements and the health of the lichen community based on cover and species richness. We also observed significant differences in species composition between areas of higher pollution and areas of lower pollution, though not enough data are available to establish the pollution sensitivity or tolerance of individual species. We note that difficulties in the collection and identification of marine lichens hamper efforts to use them broadly as bioindicators. This study suggests that marine lichens could prove useful as bioindicators, but more research is needed to understand the differential effects of pollution on individual species as well as to establish practical procedures both for quantifying marine lichen community health and for widespread bioindication using marine lichens. Finally, one species collected during this study, Verrucaria ceuthocarpa, represents a first report for the Boston Harbor Islands National Recreation Area.
Bradshaw, M., Braun, U. & Pfister, D.H., 2022.
Powdery mildews on Quercus: A worldwide distribution and rediscovered holotype provide insights into the spread of these ecologically important pathogens.
Forest Pathology.
Publisher's VersionAbstractPowdery mildew, caused by Erysiphe spp., on oak has been shown to have serious ecological consequences on Quercus hosts. Erysiphe alphitoides and E. quercicola are two of the most heavily studied and common powdery mildews known to occur on Quercus species. In recent years, these species have been noted throughout the world on a range of hosts within and outside the Quercus genus. Reports that E. alphitoides was absent in European herbaria before 1921 and the discovery of the holotype of E. alphitoides from 1911 in an American herbarium (FH) led to the current study in which we genetically analysed six specimens of E. alphitoides s. lat including, most importantly, the holotype of E. alphitoides from France collected in 1911. The results of our analyses revealed that: (1) The sequence of the E. alphitoides holotype falls within the E. quercicola clade, confirming that E. alphitoides did not spread to Europe until ~1921. (2) E. alphitoides var. chenii forms a monophyletic clade with E. epigena and should be reduced to synonymy with that species and (3) through sequence analyses E. alphitoides and E. quercicola are confirmed to have spread to North America. The sequencing results of the E. alphitoides holotype have severe nomenclatural-taxonomic consequences. A proposal was submitted simultaneously with the present manuscript to conserve the name E. alphitoides so that the traditional usage of the names E. alphitoides and E. quercicola could be maintained. The sequences obtained for the current study provide new insight into the taxonomy and spread of these ecologically significant, globally distributed species. The present study highlights the importance of sequencing specimens from type material, above all when morphological similar species are involved.
Quijada, L., et al., 2022.
Apothecial Ancestry, Evolution, and Re-Evolution in Thelebolales (Leotiomycetes, Fungi).
Biology , 11 (583) , pp. 1-28.
Publisher's VersionAbstractClosed cleistothecia-like ascomata have repeatedly evolved in non-related perithecioid and apothecioid lineages of lichenized and non-lichenized Ascomycota. The evolution of a closed, darkly pigmented ascoma that protects asci and ascospores is conceived as either an adaptation to harsh environmental conditions or a specialized dispersal strategy. Species with closed ascomata have mostly lost sterile hymenial elements (paraphyses) and the capacity to actively discharge ascospores. The class Leotiomycetes, one of the most speciose classes of Ascomycota, is mainly apothecioid, paraphysate, and possesses active ascospore discharge. Lineages with closed ascomata, and their morphological variants, have evolved independently in several families, such as Erysiphaceae, Myxotrichaceae, Rutstroemiaceae, etc. Thelebolales is a distinctive order in the Leotiomycetes class. It has two widespread families (Thelebolaceae, Pseudeurotiaceae) with mostly closed ascomata, evanescent asci, and thus passively dispersed ascospores. Within the order, closed ascomata dominate and a great diversity of peridia have evolved as adaptations to different dispersal strategies. The type genus, Thelebolus, is an exceptional case of ascomatal evolution within the order. Its species are the most diverse in functional traits, encompassing species with closed ascomata and evanescent asci, and species with open ascomata, active ascospore discharge, and paraphyses. Open ascomata were previously suggested as the ancestral state in the genus, these ascomata depend on mammals and birds as dispersal agents. In this scheme, species with closed ascomata, a lack of paraphyses, and passive ascospore discharge exhibit derived traits that evolved in adaptation to cold ecosystems. Here, we used morphological and phylogenetic methods, as well as the reconstruction of ancestral traits for ascomatal type, asci dehiscence, the presence or absence of paraphyses, and ascospore features to explore evolution within Thelebolales. We demonstrate the apothecial ancestry in Thelebolales and propose a new hypothesis about the evolution of the open ascomata in Thelebolus, involving a process of re-evolution where the active dispersal of ascospores appears independently twice within the order. We propose a new family, Holwayaceae, within Thelebolales, that retains the phenotypic features exhibited by species of Thelebolus, i.e., pigmented capitate paraphyses and active asci discharge with an opening limitation ring