L., Q., et al., 2019.
A new nematode trapping Orbilia from Puerto Rico Presented at the 2019 Mycological Society of America Annual Meeting .
Abstract
Little is known about the diversity of Orbiliomycetes from Puerto Rico. Cantrell & Lodge (2008) compiled a list of the fungi from Puerto Rico, and only mentioned four species of Orbilia: O. andina, O. chysocoma, O. delicata and O. cf. gaillardii. During IMC11 in Puerto Rico, 2018, several collections of Orbiliomycetes were found in Juan Enrique Monagas Park during the Ascomycete workshop field trip. Some of these were sent to the Cornell and Farlow Herbaria. One collection caught the attention of Luis Quijada due to its interesting morphological features. This species is not related to any of the species reported by Cantrell & Lodge (2008). The morphology of the asci and ascospores of the sexual morph clearly indicates a relationship with Orbilia auricolor and related species (section Arthrobotrys). The morphology of the strongly mammiform paraphyses and the excipulum with large cortical cells with knob-like glassy caps had never before seen in this section. Our cultures produced an Arthrobotrys-like anamorph most similar to the anamorph of O. blumenaviensis (= A. vermicola), but the conidia are distinctly smaller and never more than 1-septate. Molecular data supports the placement of this Orbilia in series Arthrobotrys. Species in this series produce adhesive networks as trapping organs in the presence of nematodes, and this behavior was confirmed in cultures of this Orbilia. Our phylogenetic analysis shows this species as very distinct from O. blumenaviensis and supports it being new to science.
PDF Haelewaters, D., et al., 2019.
Laboulbeniales (Ascomycota) of the Boston Harbor Islands II (and Other Localities): Species Parasitizing Carabidae, and the Laboulbenia flagellata Species Complex.
Northeastern Naturalist , 25 (9).
AbstractThis paper presents 13 new records of Laboulbenialean parasites on ground beetles (Coleoptera, Carabidae) from the Boston Harbor Islands National Recreation Area in Massachusetts: Laboulbenia anoplogenii, L. casnoniae, L. clivinalis, L. egens, L. filifera, L. flagellata, L. inflata, L. macrotheca, L. pedicellata, L. terminalis, L. varia-bilis, L. vulgaris, and Peyritschiella geminata. Laboulbenia clivinalis and L. egens are new country records for the US. Moreover, we present additional localities for L. casnoniae, L. clivinalis, L. filifera, L. flagellata, L. inflata, L. pedicellata, L. variabilis, and L. vulgaris. The following new country records are presented: Laboulbenia clivinalis, L. filifera, and L. variabilis from Canada; L. flagellata from the Democratic Republic of the Congo; L. pedicellata from Ukraine; L. vulgaris from Croatia and Slovenia (and the first undoubtful record from Slovakia). Laboulbenia flagellata was found on 11 host species in the genera Agonum, Oxypselaphus, Patrobus, Platynus, and Pterostichus. Using this abundant material, we performed morphometrics to test the hypothesis that L. flagel-lata is a species complex. Specimens cannot be separated based on host genus (Agonum, Pterostichus). One parameter is significant between Pterostichus mutus and each of the 4 Agonum species after applying a strong Bonferroni P-value correction: H1T, the ratio of height of cell I (HC1) to total thallus length (TTL). In addition, we collected fresh material to be able to add a molecular phylogenetic component to test said hypothesis. We generated ITS and nrLSU ribosomal sequences of several species of Laboulbenia, including isolates of L. flagellata from multiple hosts. Phylogenetic inference of the concatenated dataset shows that L. flagellata isolates from 3 host species form 2 distinct clades, providing support for our hypothesis. We also show that L. coneglianensis is sepa-rate from L. flagellata, unequivocally ending a long-standing taxonomic debate. Finally, examination of Roland Thaxter’s 1891–1932 slides led to the designation of lectotypes for L. macrothecia, L. terminalis, and P. geminata.
haelewaters_northeastern_naturalist.pdf Saba, M., et al., 2019.
Geopora ahmadii sp. nov. from Pakistan.
Mycotaxon , 134 (2) , pp. 377-389.
Publisher's VersionAbstractA new species, Geopora ahmadii, is described and illustrated based on material from Punjab, Pakistan. This species is characterized by sessile, cup- to saucer-shaped, partly immersed apothecia with whitish to grayish hymenial surfaces; broad ellipsoid, mostly uniguttulate ascospores; and brown excipular hairs. Phylogenetic analyses of the nrDNA ITS region with maximum parsimony, maximum likelihood, and Bayesian inference methods reveal that G. ahmadii is distinct from other described Geopora species. A collection previously identified as Geopora arenosa from Rawalakot, Pakistan, likely represents a second locality of G. ahmadii.
Kraisitudomsook, N., et al., 2019.
Resurrecting the genus Geomorium: Systematic study of fungi in the genera Underwoodia and Gymnohydnotrya (Pezizales) with the description of three new South American species.
Persoonia - Molecular Phylogeny and Evolution of Fungi , 44 , pp. 98-12.
Publisher's VersionAbstractMolecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Underwoodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydnotrya lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relationship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage. Molecular dating estimated that Geomoriaceae started to diverge from its sister clade Tuberaceae c. 112 MYA, with a crown age for the family in the late Cretaceous (c. 67 MYA). This scenario fits well with a Gondwanan origin of the family before the split of Australia and South America from Antarctica during the Paleocene-Eocene boundary (c. 50 MYA).
Furci, G., F., L.B.K. & Pfister, D.H., 2019.
The Biology and Distribution of Morels in Southern Chile.
Presented at the 2019 Mycological Society of America Meeting.
Abstract
View Poster
The harvesting of morels is a vital economic activity for local communities in Chile because they are a significant commercial export for the country. Although many species of morels produce ascomata in the absence of fire, abundant ascomata production occurs among some Morchella species when triggered by fire. The intentional burning of Nothofagus forests in Southern Chile, as a means to increase morel production, has become a problem and has negatively impacted ecosystems. Information on the distribution of morels in South America is limited. Spegazzini (1909) described M. patagonica from Argentina and Gamundi et al. (2004) listed five Morchella species from Patagonia and surrounding areas including Spegazzini’s species. Recently Pildain et al. (2014) and Baroni et al. (2018) have examined diversity of Morchella species in South America and the Caribbean using molecular methods. To better understand which Morchella species are being commercially harvested in Southern Chile, molecular markers were used to identify collections of morels being harvested and/or sold commercially and determine their phylogenetic relationships. Morels were sampled from collections in the Fungarium of the Fundación Fungi, Chile (FFCL) and batches purchased from commercial harvesters and bulk gatherers in 2015 and 2016. DNA sequence from the EF1a, RPB1, ITS and RPB2 were obtained and used for phylogenetic analyses. This study will contribute to the knowledge of morels in South America and help to understand their phylogenetic relationships with other Morchella species found worldwide.
PDF Quijada, L., et al., 2019.
The Asian‐Melanesian bambusicolous genus Myriodiscus is related to the genus Tympanis, the North American‐European tree pathogen.
Forest Pathology , 49 (4).
Publisher's VersionAbstractSpecies of Tympanis are well‐known pathogens in Holarctic forests, but we know lit‐ tle about their relationship to other genera in Tympanidaceae. The genus Myriodiscus, remarkable macroscopically and a possible pathogen on bamboo, has a complicated taxonomic history and has not been conclusively placed phylogenetically. Species of Myriodiscus have been described under two other generic names, Ascotremellopsis and Gelatinomyces, the latter being related to the pathogenic genus Collophorina. There has been no formal synonymy of these three bambusicolous genera or agree‐ ment on their systematic positions. We combine accurate micromorphology and DNA sequence data to show the link between Tympanis and Myriodiscus and reveal previously unrecognized features of the latter. These two genera show a type of ascus development unique in the Leotiomycetes. With this new data, we have re‐ solved past confusions over the identity of these fungi, determined their systematic position and have proposed the proper synonymies for Myriodiscus sparassoides and one new combination (M. conus).
Quijada, L., et al., 2019.
Disentangling the identity of the genus Biatorellina (Leotiomycetes, Ascomycota).
Phytotaxa , 411 (3) , pp. 183-193.
Publisher's VersionAbstractThe monotypic genus Biatorellina is currently considered a taxonomic synonym of Tryblidiopsis but has an obscure and complicated history. During the revision of the genus Tympanis a syntype of Biatorellina buchsii was fortuitously found and reviewed. Initially our revision led to the hypothesis that B. buchsii could be conspecific with Tympanis confusa. A bibliographic and morphological revision, together with a biometric study, was done using the syntype of B. buchsii and specimens of Tympanisconfusa to verify the identity of the genus Biatorellina. Our results show an overlap in the morphology, biometry, distribution and ecology of B. buchsii (≡ Tympanis buchsii) and Tympanis confusa. The identity and the placement of Biatorellina is resolved and B. buchsii is proposed as a synonym of Tympanis confus.